Nanophotonics at Sandia: Tailoring Propagation Emission and Topological behavior of Light
Abstract not provided.
Abstract not provided.
ACS Photonics
We demonstrate a new route toward the integration and deterministic placement of quantum dots (QDs) within prepatterned nanostructures. Using standard electron-beam lithography (EBL) and inductively coupled plasma reactive-ion etching (ICP-RIE), we fabricate arrays of nanowires on a III-nitride platform. Next, we integrate QDs of controlled size within the prepatterned nanowires using a bandgap-selective, wet-etching technique: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. Low-Temperature microphotoluminescence (μ-PL) measurements of individual nanowires reveal sharp spectral signatures, indicative of QD formation. Further, internal quantum efficiency (IQE) measurements reveal a near order of magnitude improvement in emitter efficiency following QSC-PEC etching. Finally, second-order cross-correlation (g(2)(0)) measurements of individual QDs directly confirm nonclassical, antibunching behavior. Our results illustrate an exciting approach toward the top-down integration of nonclassical light sources within nanophotonic platforms.
The goal of this LDRD is to develop a quantum nanophotonics capability that will allow practical control over electron (hole) and photon confinement in more than one dimension. We plan to use quantum dots (QDs) to control electrons, and photonic crystals to control photons. InGaN QDs will be fabricated using quantum size control processes, and methods will be developed to add epitaxial layers for hole injection and surface passivation. We will also explore photonic crystal nanofabrication techniques using both additive and subtractive fabrication processes, which can tailor photonic crystal properties. These two efforts will be combined by incorporating the QDs into photonic crystal surface emitting lasers (PCSELs). Modeling will be performed using finite-different time-domain and gain analysis to optimize QD-PCSEL designs that balance laser performance with the ability to nano-fabricate structures. Finally, we will develop design rules for QD-PCSEL architectures, to understand their performance possibilities and limits.
Abstract not provided.
Physica Status Solidi (A) Applications and Materials Science
Due to the ultra-wide bandgap of Al-rich AlGaN, up to 5.8 eV for the structures in this study, obtaining low resistance ohmic contacts is inherently difficult to achieve. A comparative study of three different fabrication schemes is presented for obtaining ohmic contacts to an Al-rich AlGaN channel. Schottky-like behavior was observed for several different planar metallization stacks (and anneal temperatures), in addition to a dry-etch recess metallization contact scheme on Al0.85Ga0.15N/Al0.66Ga0.34N. However, a dry etch recess followed by n+-GaN regrowth fabrication process is reported as a means to obtain lower contact resistivity ohmic contacts on a Al0.85Ga0.15N/Al0.66Ga0.34N heterostructure. Specific contact resistivity of 5 × 10−3 Ω cm2 was achieved after annealing Ti/Al/Ni/Au metallization.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Crystal Growth
Using metalorganic vapor phase epitaxy, a comprehensive study of BxGa1−xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750–900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to ~7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stacking faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at ~362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. Only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.
Nano Letters
We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core-shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core-shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core-shell nanowires, despite significantly shorter cavity lengths and reduced active region volume. Mode simulations show that due to the core-shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. The results show the viability of this p-i-n nonpolar core-shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV-visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.
Abstract not provided.
Optical Materials Express
We experimentally investigate a new class of quasi-aperiodic structures for improving the emission pattern in nanowire arrays. Efficient normal emission, as well as lasing, can be obtained from III-nitride photonic crystal (PhC) nanowire arrays that utilize slow group velocity modes near the G-point in reciprocal space. However, due to symmetry considerations, the emitted far-field pattern of such modes are often 'donut'-like. Many applications, including lighting for displays or lasers, require a more uniform beam profile in the far-field. Previous work has improved far-field beam uniformity of uncoupled modes by changing the shape of the emitting structure. However, in nanowire systems, the shape of nanowires cannot always be arbitrarily changed due to growth or etch considerations. Here, we investigate breaking symmetry by instead changing the position of emitters. Using a quasi-aperiodic geometry, which changes the emitter position within a photonic crystal supercell (2x2), we are able to linearize the photonic bandstructure near the G-point and greatly improve emitted far-field uniformity. We realize the III-nitride nanowires structures using a top-down fabrication procedure that produces nanowires with smooth, vertical sidewalls. Comparison of room-temperature micro-photoluminescence (μ-PL) measurements between periodic and quasi-aperiodic nanowire arrays reveal resonances in each structure, with the simple periodic structure producing a donut beam in the emitted far-field and the quasi-aperiodic structure producing a uniform Gaussian-like beam. We investigate the input pump power vs. output intensity in both systems and observe the simple periodic array exhibiting a non-linear relationship, indicative of lasing. We believe that the quasi-aperiodic approach studied here provides an alternate and promising strategy for shaping the emission pattern of nanoemitter systems.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Conference on Transparent Optical Networks
The ability to achieve deterministic placement of semiconductor quantum dots (QDs) opens up interesting possibilities for nanophotonic devices. By incorporating these QDs within microcavities, light-matter interaction can be tailored and enhanced, enabling phenomenon such as spontaneous emission enhancement, low threshold lasing, single photon emission and strong-coupling. The quality of these phenomena relies on the distribution of emission wavelengths of the emitter dipoles and the strength of their coupling to internal fields of the cavity. Therefore size-controlled fabrication of QDs and their deterministic placement become quite important. In this work we will describe a photoelectrochemical-based etching of III-nitride materials to achieve QDs with uniform emission wavelength. By patterning using electron beam lithography to create a nanopost structure in an epitaxially grown III-nitride based quantum well structure, we will show potential for deterministic placement. The photoluminescence response from the nanopost structure after photoelectrochemical etching reveals sharp lines indicative of quantum dot formation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry C
Illumination by a narrow-band laser has been shown to enable photoelectrochemical (PEC) etching of InGaN thin films into quantum dots with sizes controlled by the laser wavelength. Here, we investigate and elucidate the influence of solution pH on such quantum-size-controlled PEC etch process. We find that although a pH above 5 is often used for PEC etching of GaN-based materials, oxides (In2O3 and/or Ga2O3) form which interfere with quantum dot formation. At pH below 3, however, oxide-free QDs with self-terminated sizes can be successfully realized.
Abstract not provided.
There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Electrochimica Acta
We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using a narrowband laser with a linewidth less than ∼1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale, and ultimately the self-limiting etch kinetics lead to an ensemble of nanoparticles. This change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.
Journal of Applied Physics
The influence of a dilute InxGa1-xN (x ∼ 0.03) underlayer (UL) grown below a single In0.16Ga0.84N quantum well (SQW), within a light-emitting diode (LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than the LED without an UL, while the radiative recombination rates were nearly identical. This suggests that the improved radiative efficiency resulted from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.
Journal of Crystal Growth
InGaN/AlGaN/GaN-based multiple quantum wells (MQWs) with AlGaN interlayers (ILs) are investigated, specifically to examine the fundamental mechanisms behind their increased radiative efficiency at wavelengths of 530-590 nm. The AlzGa1-zN (z∼0.38) IL is ∼1-2 nm thick, and is grown after and at the same growth temperature as the ∼3 nm thick InGaN quantum well (QW). This is followed by an increase in temperature for the growth of a ∼10 nm thick GaN barrier layer. The insertion of the AlGaN IL within the MQW provides various benefits. First, the AlGaN IL allows for growth of the InxGa1-xN QW well below typical growth temperatures to achieve higher x (up to ∼0.25). Second, annealing the IL capped QW prior to the GaN barrier growth improves the AlGaN IL smoothness as determined by atomic force microscopy, improves the InGaN/AlGaN/GaN interface quality as determined from scanning transmission electron microscope images and x-ray diffraction, and increases the radiative efficiency by reducing nonradiative defects as determined by time-resolved photoluminescence measurements. Finally, the AlGaN IL increases the spontaneous and piezoelectric polarization induced electric fields acting on the InGaN QW, providing an additional red-shift to the emission wavelength as determined by Schrodinger-Poisson modeling and fitting to the experimental data. The relative impact of increased indium concentration and polarization fields on the radiative efficiency of MQWs with AlGaN ILs is explored along with implications to conventional longer wavelength emitters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nano Letters
We demonstrate a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10 nm size regime: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. We show that quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and that the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength. Low-temperature photoluminescence from ensembles of such QDs have peak wavelengths that can be tunably blue shifted by 35 nm (from 440 to 405 nm) and have line widths that narrow by 3 times (from 19 to 6 nm).