Publications

44 Results
Skip to search filters

Simulation of Low-Rm physics in complex geometries on GPUs with LGR

Zwick, David Z.; Ibanez-Granados, Daniel A.

Efficient modeling of low magnetic Reynolds number (low-Rm) magnetohydrodynamics is often challenging and requires the implementation of innovative techniques to avoid key barriers experienced with prior approaches. We detail a new paradigm for first-principles simulation of the solution to the low-Rm governing equations in complex geometries. As a result of a number of innovative numerical advances, the next-generation GPU (graphics processing unit) accelerated physics code LGR has been successfully applied to the modeling of exploding wire problems.

More Details

An error estimation driven adaptive tetrahedral workflow for full engineering models

Foulk, James W.; Granzow, Brian N.; Mota, Alejandro M.; Ibanez-Granados, Daniel A.

Tetrahedral finite element workflows have the potential to drastically reduce time to solution for computational solid mechanics simulations when compared to traditional hexahedral finite element analogues. A recently developed, higher-order composite tetrahedral element has shown promise in the space of incompressible computational plasticity. Mesh adaptivity has the potential to increase solution accuracy and increase solution robustness. In this work, we demonstrate an initial strategy to perform conformal mesh adaptivity for this higher-order composite tetrahedral element using well-established mesh modification operations for linear tetrahedra. We propose potential extensions to improve this initial strategy in terms of robustness and accuracy.

More Details

STPR 04 Milestone 6 Report

Trott, Christian R.; Ibanez-Granados, Daniel A.; Ellingwood, Nathan D.; Bova, S.W.; Labreche, Duane A.

This report documents the completion of milestone STPRO4-6 Kokkos Support for ASC applications and libraries. The team provided consultation and support for numerous ASC code projects including Sandias SPARC, EMPIRE, Aria, GEMMA, Alexa, Trilinos, LAMMPS and nimbleSM. Over the year more than 350 Kokkos github issues were resolved, with over 220 requiring fixes and enhancements to the code base. Resolving these requests, with many of them issued by ASC code teams, provided applications with the necessary capabilities in Kokkos to be successful.

More Details

Kokkos' Task DAG Capabilities

Edwards, Harold C.; Ibanez-Granados, Daniel A.

This report documents the ASC/ATDM Kokkos deliverable "Production Portable Dy- namic Task DAG Capability." This capability enables applications to create and execute a dynamic task DAG ; a collection of heterogeneous computational tasks with a directed acyclic graph (DAG) of "execute after" dependencies where tasks and their dependencies are dynamically created and destroyed as tasks execute. The Kokkos task scheduler executes the dynamic task DAG on the target execution resource; e.g. a multicore CPU, a manycore CPU such as Intel's Knights Landing (KNL), or an NVIDIA GPU. Several major technical challenges had to be addressed during development of Kokkos' Task DAG capability: (1) portability to a GPU with it's simplified hardware and micro- runtime, (2) thread-scalable memory allocation and deallocation from a bounded pool of memory, (3) thread-scalable scheduler for dynamic task DAG, (4) usability by applications.

More Details
44 Results
44 Results