Publications

182 Results
Skip to search filters

Aero-Optics of Hypersonic Turbulent Boundary Layers

Lynch, Kyle P.; Miller, Nathan M.; Guildenbecher, Daniel R.; Butler, Luke B.; Gordeyev, Stanislav G.; Castillo, Pedro G.; Gross, Andreas G.; Wang, Gwendolyn T.; Mazumdar, Yi C.

Aero-optics refers to optical distortions due to index-of-refraction gradients that are induced by aerodynamic density gradients. At hypersonic flow conditions, the bulk velocity is many times the speed of sound and density gradients may originate from shock waves, compressible turbulent structures, acoustic waves, thermal variations, etc. Due to the combination of these factors, aero-optic distortions are expected to differ from those common to sub-sonic and lower super-sonic speeds. This report summarizes the results from a 2019-2022 Laboratory Directed Research and Development (LDRD) project led by Sandia National Laboratories in collaboration with the University of Notre Dame, New Mexico State University, and the Georgia Institute of Technology. Efforts extended experimental and simulation methodologies for the study of turbulent hypersonic boundary layers. Notable experimental advancements include development of spectral de-aliasing techniques for highspeed wavefront measurements, a Spatially Selective Wavefront Sensor (SSWFS) technique, new experimental data at Mach 8 and 14, a Quadrature Fringe Imaging Interferometer (QFII) technique for time-resolved index-of-refraction measures, and application of QFII to shock-heated air. At the same time, model advancements include aero-optic analysis of several Direct Numerical Simulation (DNS) datasets from Mach 0.5 to 14 and development of wall-modeled Large Eddy Simulation (LES) techniques for aero-optic predictions. At Mach 8 measured and predicted root mean square Optical Path Differences agree within confidence bounds but are higher than semi-empirical trends extrapolated from lower Mach conditions. Overall, results show that aero-optic effects in the hypersonic flow regime are not simple extensions from prior knowledge at lower speeds and instead reflect the added complexity of compressible hypersonic flow physics.

More Details

3D optical diagnostics for explosively driven deformation and fragmentation

International Journal of Impact Engineering

Guildenbecher, Daniel R.; Jones, Elizabeth M.; Munz, Elise D.; Reu, Phillip L.; Miller, Timothy J.; Perez, Francisco; Thompson, Andrew D.; Ball, James P.

High-speed, optical imaging diagnostics are presented for three-dimensional (3D) quantification of explosively driven metal fragmentation. At early times after detonation, Digital Image Correlation (DIC) provides non-contact measures of 3D case velocities, strains, and strain rates, while a proposed stereo imaging configuration quantifies in-flight fragment masses and velocities at later times. Experiments are performed using commercially obtained RP-80 detonators from Teledyne RISI, which are shown to create a reproducible fragment field at the benchtop scale. DIC measurements are compared with 3D simulations, which have been ‘leveled’ to match the spatial resolution of DIC. Results demonstrate improved ability to identify predicted quantities-of-interest that fall outside of measurement uncertainty and shot-to-shot variability. Similarly, video measures of fragment trajectories and masses allow rapid experimental repetition and provide correlated fragment size-velocity measurements. Measured and simulated fragment mass distributions are shown to agree within confidence bounds, while some statistically meaningful differences are observed between the measured and predicted conditionally averaged fragment velocities. Together these techniques demonstrate new opportunities to improve future model validation.

More Details

Imaging Pyrometry and Optical Depth Measurements in Explosive Fireballs using High-Speed Imaging

AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Brown, Alex D.; Gomez, Mateo; Meyer, Terrence R.; Son, Steven F.; Guildenbecher, Daniel R.

A significant portion of the energy released by an explosive is contained in a postdetonation fireball. Quantitative characterizations of in situ optical properties are needed to verify predictive models of these environments. This work investigates the narrowband red, green, and blue (RGB) emissive and absorptive characteristics of lab scale explosive blasts. Experiments utilize a custom triple-bandpass filter to image blast emission with a high-speed color camera and calculate temperatures from the RGB band ratios. The measured emission is contingent on the optical density, which is also explored with a triple-band (RGB) optical density measurement using the color camera. Time histories of the calculated emissive temperature and optical depth provide insight into the interpretation of pyrometric measurements in optically dense, particle laden combustion environments. This is applicable to many other reacting systems.

More Details

Aero-optical distortions of turbulent boundary layers: Hypersonic dns

AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Miller, Nathan M.; Lynch, Kyle P.; Gordeyev, Stanislov; Guildenbecher, Daniel R.; Duan, Lian; Wagnild, Ross M.

Four Direct Numerical Simulation (DNS) datasets covering effective freestream Mach numbers of 8 through 14 are used to investigate the behavior of turbulence-induced aero-optical distortions in hypersonic boundary layers. The datasets include two from simulations of flat plate boundary layers (Mach 8 and 14) and two from simulations of flow over a sharp cone (Mach 8 and 14). Instantaneous three-dimensional fields of density from each DNS are converted to refraction index and integrated to produce distributions of the Optical Path Differences (OPD) caused by turbulence. These values are then compared to experimental data from the literature and to an existing model for the root-mean-square of the OPD. Although the model was originally developed for flows with Mach ≤ 5, it provides a basis to which we compare the hypersonic data.

More Details

Wall-Modeled Large-Eddy Simulations of Mach 8 Turbulent Boundary Layer and Computation of Aero-Optical Distortions

AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Castillo, Pedro; Gross, Andreas; Miller, Nathan M.; Guildenbecher, Daniel R.; Lynch, Kyle P.

Compressible wall modeled large-eddy simulations of a Mach eight turbulent boundary layer over a flat plate were carried out for the conditions of the Hypersonic Wind Tunnel at Sandia National Laboratories. Overall good agreement of the velocity and temperature profiles is obtained with reference data from a direct numerical simulation and a theoretical relationship. Profiles of the resolved root-mean-square velocity fluctuations are in adequate agreement with the reference data. The refractive index is calculated from the density field and integrated along an expected beam path to calculate the optical path length. Then, by subtracting a bilinear fit of the instantaneous optical path length, the optical path difference is obtained. The computed aero-optical path difference shows a similar dependence on the aperture size as in the literature. The normalized root-mean-square optical path difference from the present wall-modeled large-eddy simulations and a reference direct numerical simulation and experiment are in good agreement. The optical path distortion is slightly above the value predicted by a semi-analytical relationship from the literature. Finally, instantaneous snapshots of the flow are analyzed via proper orthogonal decomposition and the optical path distortion is computed from subsets of the modes. The optical path distortion converges quickly with increasing number of modes which suggests that the main contribution comes from large energetic flow structures.

More Details

Pushing the Limits of High-speed X-ray Tomography to See the Unknown

Halls, Benjamin R.; Rahman, Naveed A.; James, Jeremy W.; Reardon, Sam M.; White, Glen W.; Quintana, Enrico C.; Guildenbecher, Daniel R.

First-of-their kind datasets from a high-speed X-ray tomography system were collected, and a novel numerical effort utilizing temporal information to reduce measurement uncertainty was shown. The experimental campaign used three high-speed X-ray imaging systems to collect data at 100 kHz of a scene containing high-velocity objects. The scene was a group of known objects propelled by a 12-gauge shotgun shell reaching speeds of hundreds of meters per second. These data represent a known volume where the individual components are known, with experimental uncertainties that can be used for reconstruction algorithm validation. The numerical effort used synthetic volumes in MATLAB to produce projections along known lines of sight to perform tomographic reconstructions. These projections and reconstructions were performed on a single object at two orientations, representing two timesteps, to increase the reconstruction accuracy.

More Details

Aero-Optical Measurements of a Mach 8 Boundary Layer

AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021

Lynch, Kyle P.; Spillers, Russell W.; Miller, Nathan M.; Guildenbecher, Daniel R.; Gordeyev, Stanislav

Measurements are presented of the aero-optic distortion produced by a Mach 8 turbulent boundary layer in the Sandia Hypersonic Wind Tunnel. Flat optical inserts installed in the test section walls enabled a double-pass arrangement of a collimated laser beam. The distortion of this beam was imaged by a high-speed Shack-Hartmann sensor at a sampling rate of up to 1 MHz. Analysis is performed using two processing methods to extract the aero-optic distortion from the data. A novel de-aliasing algorithm is proposed to extract convective-only spectra and is demonstrated to correctly quantify the physical spectra even in case of relatively low sampling rates. The results are compared with an existing theoretical model, and it is shown that this model under-predicts the experimentally measured distortions regardless of the processing method used. Possible explanations for this discrepancy are presented. The presented results represent to-date the highest Mach number for which aero-optic boundary layer distortion measurements are available.

More Details

Solid propellant scaling analysis using simultaneous holography and imaging pyrometry

AIAA Scitech 2021 Forum

Marsh, Andrew W.; Zheng, Andy X.; Mazumdar, Yi C.; Heyborne, Jeffery D.; Guildenbecher, Daniel R.

Aluminum particle combustion is a critical component in solid propellant operation. Understanding these processes is essential for improving specific impulse and other performance metrics. Prior studies of aluminum particle combustion in the literature have focused on spatial and temperature statistics for a single propellant strand size, which is typically significantly smaller than the full grain size used in aerospace and defense applications. In this work, we aim to determine the effect of increasing propellant strand size on several key properties of aluminum particle combustion at atmospheric pressure. To accomplish this, we use simultaneous high speed holography and imaging pyrometry to obtain temporally resolved spatial and temperature information. Here, we discuss how agglomerate size, velocity, and temperature statistics vary as a function of propellant strand size from 6 mm up to 19 mm in diameter. By understanding how the statistics scale as a function of strand size, we can determine how to extrapolate lab-scale experimental data to full-scale propellant burns.

More Details

Aero-Optical Distortions of Turbulent Boundary Layers: DNS up to Mach 8

AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021

Miller, Nathan M.; Guildenbecher, Daniel R.; Lynch, Kyle P.

The character of aero-optical distortions produced by turbulence is investigated for subsonic, supersonic, and hypersonic boundary layers. Data from four Direct Numerical Simulations (DNS) of boundary layers with nominal Mach numbers ranging from 0.5 to 8 are used. The DNS data for the subsonic and supersonic boundary layers are of flow over flat plates. Two hypersonic boundary layers are both from flows with a Mach 8 inlet condition, one of which is flow over a flat plate while the other is a boundary layer on a sharp cone. Density fields from these datasets are converted to index-of-refraction fields which are integrated along an expected beam path to determine the effective Optical Path Lengths that a beam would experience while passing through the refractions of the turbulent field. By then accounting for the mean path length and tip/tilt issues related to bulk boundary layer effects, the distribution of Optical Path Differences (OPD s) is determined. Comparisons of the root-mean-squares of the OPDs are made to an existing model. The OPDr m s values determined from the subsonic and supersonic data were found to match the existing model well. As could be expected, the hypersonic data does not match as well due to assumptions like the Strong Reynold Analogy that were made in the derivation of the model. Until now, the model has never been compared to flows with Mach numbers as high as included herein or to flow over a sharp cone geometry.

More Details

Development of a Spatially Filtered Wavefront Sensor as an Aero-Optical Measurement Technique

AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021

Butler, Luke; Gordeyev, Stanislav; Lynch, Kyle P.; Guildenbecher, Daniel R.

This paper validates the concept of a spatially filtered wavefront sensor, which uses a convergent-divergent beam to reduce sensitivity to aero-optical distortions near the focal point while retaining sensitivity at large beam diameters. This sensor was used to perform wavefront measurements in a cavity flow test section. The focal point was traversed to various spanwise locations across the test section, and the overall OPDRMS levels and aperture-averaged spectra of wavefronts were computed. It was demonstrated that the sensor was able to effectively suppress the stronger aero-optical signal from the cavity flow and recover the aero-optical signal from the boundary layer when the focal point was placed inside the shear region of the cavity flow. To model these measured quantities, additional collimated beam wavefronts were taken at various subsonic speeds in a wind tunnel test section with two turbulent boundary layers, and then in the cavity flow test section, where the signal from the cavity was dominant. The results from the experimental model agree with the measured convergent-divergent beam results, confirming that the spatial filtering properties of the proposed sensor are due to attenuating effects at small apertures.

More Details

Post-detonation fireball thermometry via femtosecond-picosecond coherent anti-Stokes Raman Scattering (CARS)

Proceedings of the Combustion Institute

Richardson, Daniel R.; Kearney, S.P.; Guildenbecher, Daniel R.

Accurate knowledge of post-detonation fireball temperatures is important for understanding device performance and for validation of numerical models. Such measurements are difficult to make even under controlled laboratory conditions. In this work temperature measurements were performed in the fireball of a commercial detonator (RP-80, Teledyne RISI). The explosion and fragments were contained in a plastic enclosure with glass windows for optical access. A hybrid femtosecond-picosecond (fs-ps) rotational coherent anti-Stokes Raman scattering (CARS) instrument was used to perform gas-phase thermometry along a one-dimensional measurement volume in a single laser shot. The 13-mm-thick windows on the explosive-containment housing introduced significant nonlinear chirp on the fs lasers pulses, which reduced the Raman excitation bandwidth and did not allow for efficient excitation of high-J Raman transitions populated at flame temperatures. To overcome this, distinct pump and Stokes pulses were used in conjunction with spectral focusing, achieved by varying the relative timing between the pump and Stokes pulses to preferentially excite Raman transitions relevant to flame thermometry. Light scattering from particulate matter and solid fragments was a significant challenge and was mitigated using a new polarization scheme to isolate the CARS signal. Fireball temperatures were measured 35-40 mm above the detonator, 12-25 mm radially outward from the detonator centerline, and at 18 and 28 μs after initiation. At these locations and times, significant mixing between the detonation products and ambient air had occurred thus increasing the nitrogen-based CARS thermometry signal. Initial measurements show a distribution of fireball temperatures in the range 300-2000 K with higher temperatures occurring 28 μs after detonation.

More Details

Three-beam rotational coherent anti-Stokes Raman spectroscopy thermometry in scattering environments

Applied Optics

Richardson, Daniel R.; Kearney, S.P.; Guildenbecher, Daniel R.

Three-beam rotational coherent anti-Stokes Raman scattering (CARS) measurements performed in highly scattering environments are susceptible to contamination by two-beam CARS signals generated by the pump–probe and Stokes–probe interactions at the measurement volume. If this occurs, differences in the Raman excitation bandwidth between the two-beam and three-beam CARS signals can add significant errors to the spectral analysis. This interference, to the best of our knowledge, has not been acknowledged in previous three-beam rotational CARS experiments, but may introduce measurement errors up to 25% depending on the temperature, amount of scattering, and differences between the two-beam and three-beam Raman excitation bandwidths. In this work, the presence of two-beam CARS signal contamination was experimentally verified using a femtosecond–picosecond rotational CARS instrument in two scattering environments: (1) a fireball generated by a laboratory-scale explosion that contained particulate matter, metal fragments, and soot, and (2) a flow of air and small liquid droplets. A polarization scheme is presented to overcome this interference. By rotating the pump and Stokes polarizations +55◦ and −55◦ from the probe, respectively, the two-beam and three-beam CARS signals are orthogonally polarized and can be separated using a polarization analyzer. Using this polarization arrangement, the Raman-resonant three-beam CARS signal amplitude is reduced by a factor of 2.3 compared to the case where all polarizations are parallel. This method is successfully demonstrated in both scattering environments. A theoretical model is presented, and the temperature measurement error is studied for different experimental conditions. The criteria for when this interference may be present are discussed.

More Details

Post-detonation fireball thermometry via femtosecond-picosecond coherent anti-Stokes Raman Scattering (CARS)

Proceedings of the Combustion Institute

Richardson, Daniel R.; Kearney, S.P.; Guildenbecher, Daniel R.

Accurate knowledge of post-detonation fireball temperatures is important for understanding device performance and for validation of numerical models. Such measurements are difficult to make even under controlled laboratory conditions. Here, temperature measurements were performed in the fireball of a commercial detonator (RP-80, Teledyne RISI). The explosion and fragments were contained in a plastic enclosure with glass windows for optical access. A hybrid femtosecond-picosecond (fs-ps) rotational coherent anti-Stokes Raman scattering (CARS) instrument was used to perform gas-phase thermometry along a one-dimensional measurement volume in a single laser shot. The 13-mm-thick windows on the explosive-containment housing introduced significant nonlinear chirp on the fs lasers pulses, which reduced the Raman excitation bandwidth and did not allow for efficient excitation of high-J Raman transitions populated at flame temperatures. To overcome this, distinct pump and Stokes pulses were used in conjunction with spectral focusing, achieved by varying the relative timing between the pump and Stokes pulses to preferentially excite Raman transitions relevant to flame thermometry. Light scattering from particulate matter and solid fragments was a significant challenge and was mitigated using a new polarization scheme to isolate the CARS signal. Fireball temperatures were measured 35–40 mm above the detonator, 12–25 mm radially outward from the detonator centerline, and at 18 and 28 µs after initiation. At these locations and times, significant mixing between the detonation products and ambient air had occurred thus increasing the nitrogen-based CARS thermometry signal. Initial measurements show a distribution of fireball temperatures in the range 300–2000 K with higher temperatures occurring 28 µs after detonation.

More Details

Tomographic time-resolved laser-induced incandescence

AIAA Scitech 2020 Forum

Munz, Elise D.; Halls, Benjamin R.; Richardson, Daniel R.; Guildenbecher, Daniel R.; Cenker, Emre; Paciaroni, Megan E.

Three ultra-high-speed, 10 MHz, cameras imaged the time-resolved decay of laser-induced incandescence (LII) from soot in a turbulent non-premixed ethylene jet flame. Cameras were equipped with a stereoscope allowing each CMOS array to capture two separate views of the flame. The resulting six views were reconstructed into a volumetric soot decay series using commercially available DaVis tomographic software by LaVision. Primary soot particle sizes were estimated from the decay time history on a per voxel basis by comparing measured signals to an LII model. Experimentally quantified soot particle sizes agree with existing predictions and previous measurements.

More Details

Digital phase-sensitive holography for numerical shock-wave distortion cancellation

AIAA Scitech 2020 Forum

Evans, Tyrus M.; Marsh, Andrew W.; Uzodinma, Jaylon; Mazumdar, Yi C.; Guildenbecher, Daniel R.

In extreme supersonic, hypersonic, or explosive environments, the presence of gas-phase shocks cause coherent imaging distortions and inhibit object tracking. In this work, we aim to remove these distortions by measuring the relative phase of the light using digital phase-sensitive holography techniques including a two-step phase-shifting technique and a single-shot polarization phase-shifting technique. Once the phase of the shock-wave is acquired, the distortion is numerically canceled from the image and the un-distorted object image is recovered. This work discusses the theory, provides simulation results, and presents preliminary experimental data showing how this concept can be applied to remove shock-wave phase distortions created by supersonic air jets.

More Details

High-magnification, long-working distance plenoptic background oriented schlieren (BOS)

AIAA Scitech 2020 Forum

Guildenbecher, Daniel R.; Kunzler, William M.; Sweatt, W.C.; Casper, Katya M.

The design, construction, and testing of a high-magnification, long working-distance plenoptic camera is reported. A plenoptic camera uses a microlens array to enable resolution of the spatial and angular information of the incoming light field. Instantaneous images can be numerically refocused and perspective shifted in post-processing to enable threedimensional (3D) resolution of a scene. Prior to this work, most applications of plenoptic imaging were limited to relatively low magnifications (1× or less) or small working distances. Here, a unique system is developed with enables 5× magnification at a working distance of over a quarter meter. Experimental results demonstrate ~25 µm spatial resolution with 3D imaging capabilities. This technology is demonstrated for 3D imaging of the shock structure in a underexpanded, Mach 3.3 free air jet.

More Details

Improving the detectable particle size floor of digital inline holography

ICLASS 2018 - 14th International Conference on Liquid Atomization and Spray Systems

Falgout, Z.; Chen, Y.; Guildenbecher, Daniel R.

Digital in-line holography (DIH) has been proven to provide three-dimensional droplet position, size, and velocity distributions with a single-camera. This data is crucial for understanding multi-phase flows. However, the limits of usability and accuracy of DIH for dilute fields of very small particles, such as sprays, have yet to be studied in detail. In this work, we examine the performance of this diagnostic in the limit of very small particles, on the order of a pixel in diameter and smaller, and propose a post-processing method to improve them: Lanczos interpolation. The Lanczos interpolation kernel is the digital implementation of the Whittaker sinc filter, and strikes a compromise between maintaining the spatial frequency ceiling of the original digital image and computational cost of the interpolation. Without Lanczos interpolation, or super-sampling, the ultimate detectable particle size floor is on the order of 4 pixel widths. We show in this work that this limit can be reduced by 50% or more with super-sampling, depending upon the desired diameter accuracy. Here, we examine the effect of super-sampling on the resulting accuracy of the extracted size and position of spherical particles. Extending this resolution limit increases the overall detection efficiency of the diagnostic. Alternatively, it can also allow a larger field-of-view to be captured with the same particle size floor.

More Details

Study of galinstan liquid metal breakup using backlit imaging and digital in-line holography

ICLASS 2018 - 14th International Conference on Liquid Atomization and Spray Systems

Chen, Yi; Wagner, Justin W.; Farias, Paul A.; Guildenbecher, Daniel R.

Many liquid metals form surface oxides, which can affect atomization processes during thermal spray coating and metal powder formation. In this work, we experimentally investigate the behaviors and morphologies of a liquid metal under a shockwave-induced cross-flow. Specifically, we use Galinstan, a non-toxic room temperature liquid metal that forms thin elastic oxide layers. By utilizing backlit imaging and digital in-line holography (DIH) of liquid columns inside a shock tube, we are able to compare the behavior of Galinstan with water. Morphological differences and drag properties are investigated as a function of Weber number in the bag, multimode, and sheet thinning regimes. We show that surface oxides appear to drive liquid metal Galinstan to break up earlier in non-dimensional time and cause the formation of more non-spherical breakup shapes and droplets. This investigation of surface oxide behaviors helps to further the understanding of liquid metal breakup.

More Details

Post-detonation fireball thermometry via 1d rotational cars

AIAA Scitech 2020 Forum

Richardson, Daniel R.; Kearney, S.P.; Guildenbecher, Daniel R.

The temperature inside fireballs produced by detonations is an important quantity of interest for the validation of models. However, such measurements are very difficult to make due to the large pressure and temperature gradients and the harsh environment. In this abstract we will report on one-dimensional rotational coherent anti-Stokes Raman scattering (1D RCARS) measurements performed in such fireballs. CARS measurements were performed at 18 and 28 µs after detonation of a commercial detonator, and the measured temperatures are in the range 300–1600 K.

More Details

Laser diagnostics for solid rocket propellants and explosives

2019 IEEE Research and Applications of Photonics in Defense Conference, RAPID 2019 - Proceedings

Mazumdar, Yi C.; Heyborne, Jeffery D.; Guildenbecher, Daniel R.

Laser diagnostics are essential for time-resolved studies of solid rocket propellant combustion and small explosive detonations. Digital in-line holography (DIH) is a powerful tool for three-dimensional particle tracking in multiphase flows. By combining DIH with complementary diagnostics, particle temperatures and soot/smoke properties can be identified.

More Details

Development and uncertainty characterization of 3D particle location from perspective shifted plenoptic images

Optics Express

Munz, Elise D.; Guildenbecher, Daniel R.; Thurow, Brian S.

This work details the development of an algorithm to determine 3D position and in plane size and shape of particles by exploiting the perspective shift capabilities of a plenoptic camera combined with stereo-matching methods. This algorithm is validated using an experimental data set previously examined in a refocusing based particle location study in which a static particle field is translated to provide known depth displacements at varied magnification and object distances. Examination of these results indicates increased accuracy and precision is achieved compared to a previous refocusing based method at significantly reduced computational costs. The perspective shift method is further applied to fragment localization and sizing in a lab scale fragmenting explosive.

More Details

Improving the spatial dynamic range of digital inline particle holography

Applied Optics

Falgout, Zachary; Chen, Yi; Guildenbecher, Daniel R.

Digital inline holography has been proven to provide three-dimensional droplet position, size, and velocity distributions with a single camera. These data are crucial for understanding multiphase flows. In this work, we examine the performance of this diagnostic in the limit of very small particles, on the order of a pixel in diameter and smaller, and propose a postprocessing method to improve them: Lanczos interpolation. The Lanczos interpolation kernel is the digital implementation of the Whittaker sinc filter and strikes a compromise between maintaining the spatial frequency ceiling of the original digital image and computational cost of the interpolation. Without Lanczos interpolation, or supersampling, the ultimate detectable particle size floor is on the order of four pixel widths. We show in this work that this limit can be reduced by 50% or more with supersampling, depending upon the desired diameter accuracy, and examine the effect of supersampling on the resulting accuracy of the extracted size and position of spherical particles. Extending this resolution limit increases the overall detection efficiency of the diagnostic. Since this increases the spatial dynamic range of the diagnostic, it can also allow a larger field of view to be captured with the same particle size floor.

More Details

Single-camera, single-shot, time-resolved laser-induced incandescence decay imaging

Optics Letters

Chen, Yi; Cenker, Emre; Richardson, Daniel R.; Kearney, S.P.; Halls, Benjamin R.; Skeen, Scott A.; Shaddix, Christopher R.; Guildenbecher, Daniel R.

Knowledge of soot particle sizes is important for understanding soot formation and heat transfer in combustion environments. Soot primary particle sizes can be estimated by measuring the decay of time-resolved laser-induced incandescence (TiRe-LII) signals. Existing methods for making planar TiRe-LII measurements require either multiple cameras or time-gate sweeping with multiple laser pulses, making these techniques difficult to apply in turbulent or unsteady combustion environments. Here, we report a technique for planar soot particle sizing using a single high-sensitivity, ultra-high-speed 10 MHz camera with a 50 ns gate and no intensifier. With this method, we demonstrate measurements of background flame luminosity, prompt LII, and TiRe-LII decay signals for particle sizing in a single laser shot. The particle sizing technique is first validated in a laminar non-premixed ethylene flame. Then, the method is applied to measurements in a turbulent ethylene jet flame.

More Details

Recent developments using background oriented schlieren with a plenoptic camera

RAPID 2018 - 2018 IEEE Research and Applications of Photonics In Defense Conference

Klemkowsky, Jenna N.; Clifford, Christopher J.; Thurow, Brian S.; Kunzler, William M.; Guildenbecher, Daniel R.

Plenoptic background oriented schlieren imaging has recently been introduced as a single-camera technique used to observe three-dimensional density gradients in a flow field. With the ability to generate focused BOS images, the signature of density gradients produced at different depth locations can be distinguished from one another. Two experiments demonstrate the capabilities of this technique. The first experiment visualized the rising plumes produced from two simple flames placed at different depths in a low magnification configuration. The second experiment used a high magnification configuration with long working distance to visualize shock waves in a 6.35 millimeter diameter underexpanded jet. These experiments demonstrate plenoptic BOS as a simple and convenient three-dimensional visualization technique that can be applied in facilities with limited optical access.

More Details

Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow

International Journal of Multiphase Flow

Chen, Yi; Wagner, Justin W.; Farias, Paul A.; DeMauro, Edward P.; Guildenbecher, Daniel R.

Liquid metal breakup processes are important for understanding a variety of physical phenomena including metal powder formation, thermal spray coatings, fragmentation in explosive detonations and metalized propellant combustion. Since the breakup behaviors of liquid metals are not well studied, we experimentally investigate the roles of higher density and fast elastic surface oxide formation on breakup morphology and droplet characteristics. This work compares the column breakup of water with Galinstan, a room-temperature eutectic liquid metal alloy of gallium, indium and tin. A shock tube is used to generate a step change in convective velocity and back-lit imaging is used to classify morphologies for Weber numbers up to 250. Digital in-line holography (DIH) is then used to quantitatively capture droplet size, velocity and three-dimensional position information. Differences in geometry between canonical spherical drops and the liquid columns utilized in this paper are likely responsible for observations of earlier transition Weber numbers and uni-modal droplet volume distributions. Scaling laws indicate that Galinstan and water share similar droplet size-velocity trends and root-normal volume probability distributions. However, measurements indicate that Galinstan breakup occurs earlier in non-dimensional time and produces more non-spherical droplets due to fast oxide formation.

More Details

Volumetric calibration of a plenoptic camera

Applied Optics

Munz, Elise D.; Fahringer, Timothy W.; Guildenbecher, Daniel R.; Thurow, Brian S.

Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creation of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.

More Details

Backscatter particle image velocimetry via optical time-of-flight sectioning

Optics Letters

Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle P.; Guildenbecher, Daniel R.

Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow. Thus, scattering noise from outside the measurement volume is eliminated. This PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.

More Details

Phase conjugate digital inline holography (PCDIH)

Optics Letters

Guildenbecher, Daniel R.; Guildenbecher, Daniel R.; hoffmeister, kathryn h.; Kunzler, William M.; Richardson, Daniel R.; Kearney, Sean P.

We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

More Details

Agglomerate sizing in aluminized propellants using digital inline holography and traditional diagnostics

Journal of Propulsion and Power

Powell, Michael S.; Gunduz, Ibrahim W.; Shang, Weixiao; Chen, Jun; Son, Steven F.; Chen, Yi; Guildenbecher, Daniel R.

Aluminized ammonium perchlorate composite propellants can form large molten agglomerated particles that may result in poor combustion performance, slag accumulation, and increased two-phase flow losses. Quantifying agglomerate size distributions are needed to gain an understanding of agglomeration dynamics and ultimately design new propellants for improved performance. Due to complexities of the reacting multiphase environment, agglomerate size diagnostics are difficult and measurement accuracies are poorly understood. To address this, the current work compares three agglomerate sizing techniques applied to two propellant formulations. Particle collection on a quench plate and backlit videography are two relatively common techniques, whereas digital inline holography is an emerging alternative for three-dimensional measurements. Atmospheric pressure combustion results show that all three techniques are able to capture the qualitative trends; however, significant differences exist in the quantitative size distributions and mean diameters. For digital inline holography, methods are proposed that combine temporally resolved high-speed recording with lower-speed but higher spatial resolution measurements to correct for size- velocity correlation biases while extending the measurable size dynamic range. The results from this work provide new guidance for improved agglomerate size measurements along with statistically resolved datasets for validation of agglomerate models.

More Details

PIVOTS: A novel method of performing time gated particle image velocimetry

Optics InfoBase Conference Papers

Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle P.; Guildenbecher, Daniel R.

Backscatter Particle Image Velocimetry via Optical Time-of-flight Sectioning (PIVOTS) is a novel method of performing PIV in situations where conventional PIV presents difficulties. The PIVOTS technique is introduced along with recent applications and results.

More Details

Time-resolved digital in-line holography and pyrometry for aluminized solid rocket propellants

Optics InfoBase Conference Papers

Chen, Yi; Heyborne, Jeffery D.; Guildenbecher, Daniel R.

Combustion of aluminum droplets in solid rocket propellants is studied using laser diagnostic techniques. The time-resolved droplet velocity, temperature, and size are measured using high speed digital in-line holography and imaging pyrometry at 20 kHz.

More Details

Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics

Guildenbecher, Daniel R.; Munz, Elise D.

Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.

More Details

Volumetric calibration of a plenoptic camera

AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Munz, Elise D.; Fahringer, Timothy W.; Thurow, Brian S.; Guildenbecher, Daniel R.

Due to the increasing prevalence of plenoptic imaging it is necessary to explore the volumetric calibration of this imaging system to correct for inaccuracies due to real world lens distortions and thin lens assumptions in current processing methods. An overview of plenoptic imaging is given and methods of volumetric calibration of a plenoptic camera based on a polynomial mapping function are presented. The accuracy and feasibility of these methods are examined. Preliminary results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy. Depth accuracy of particle location in calibrated volumes was measured to be accurate within 1% of the calculated volume size.

More Details

Aerodynamic breakup and secondary drop formation for a liquid metal column in a shock-induced cross-flow

AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Chen, Yi; DeMauro, Edward P.; Wagner, Justin W.; Arienti, Marco A.; Guildenbecher, Daniel R.; Farias, Paul A.; Grasser, Thomas W.; Sanderson, Patrick D.; Albert, Samuel W.; Turpin, Aaron M.; Sealy, William; Ketchum, Remington S.

The breakup of liquid metals is of relevance to powder formation, thermal spray coatings, liquid metal cooling systems, investigations of accident scenarios, and model validation. In this work, a column of liquid Galinstan, a room-temperature liquid metal alloy, is studied in a shock-induced cross-flow. Backlit experiments are used to characterize breakup morphology and digital in-line holography is used to quantitatively measure the size and speed of secondary droplets. Two-dimensional simulations are also developed in order to help understand the underlying mechanisms that drive breakup behavior. Results show that although breakup morphologies are similar for water and Galinstan at the same Weber number, the breakup distance, secondary droplet size, and secondary droplet shapes differ. Evidence indicates that secondary droplet formation may be related to the Weber number, density ratio, the convective velocity and other effects.

More Details

Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry

Combustion and Flame

Chen, Yi; Guildenbecher, Daniel R.; Hoffmeister, Kathryn N.; Cooper, Marcia A.; Stauffacher, Howard L.; Oliver, Michael S.; Washburn, Ephraim B.

The combustion of molten metals is an important area of study with applications ranging from solid aluminized rocket propellants to fireworks displays. This work uses digital in-line holography (DIH) to experimentally quantify the three-dimensional position, size, and velocity of aluminum particles during combustion of ammonium perchlorate (AP) based solid-rocket propellants. In addition, spatially resolved particle temperatures are simultaneously measured using two-color imaging pyrometry. To allow for fast characterization of the properties of tens of thousands of particles, automated data processing routines are proposed. Using these methods, statistics from aluminum particles with diameters ranging from 15 to 900 µm are collected at an ambient pressure of 83 kPa. In the first set of DIH experiments, increasing initial propellant temperature is shown to enhance the agglomeration of nascent aluminum at the burning surface, resulting in ejection of large molten aluminum particles into the exhaust plume. The resulting particle number and volume distributions are quantified. In the second set of simultaneous DIH and pyrometry experiments, particle size and velocity relationships as well as temperature statistics are explored. The average measured temperatures are found to be 2640 ± 282 K, which compares well with previous estimates of the range of particle and gas-phase temperatures. The novel methods proposed here represent new capabilities for simultaneous quantification of the joint size, velocity, and temperature statistics during the combustion of molten metal particles. The proposed techniques are expected to be useful for detailed performance assessment of metalized solid-rocket propellants.

More Details

Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography

Applied Optics

Munz, Elise D.; Thurow, Brian S.; Guildenbecher, Daniel R.

Digital in-line holography (DIH) and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with DIH. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and DIH successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. In contrast, plenoptic imaging allows for a simpler experimental configuration and, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments.

More Details

Temperature and oxygen measurements in a metallized propellant flame by hybrid fs/ps rotational coherent anti-Stokes Raman scattering

Optics InfoBase Conference Papers

Kearney, S.P.; Guildenbecher, Daniel R.

Ultrafast pure-rotational CARS is applied to an aluminized ammonium-perchlorate propellant flame. Background-free spectra were acquired in this challenging high-temperature, particle-laden environment and successfully fit for temperature and oxygen/nitrogen ratio using a simple theoretical model.

More Details

Digital imaging holography and pyrometry of aluminum drop combustion in solid propellant plumes

Optics InfoBase Conference Papers

Chen, Yi; Guildenbecher, Daniel R.; Hoffmeister, Kathryn N.; Sojka, Paul E.

Aluminized propellants produce molten particulates of variable size and temperature. In this work, sizes and three-dimensional positions are determined using digital in-line holography with a pulsed laser. Simultaneously, particle temperatures are measured using two-color pyrometry.

More Details

High-speed (20 kHz) digital in-line holography (DIH) to quantify the impact of a viscous drop on a thin film

Optics InfoBase Conference Papers

Guildenbecher, Daniel R.; Sojka, Paul E.

Digital in-line holography (DIH) quantifies the fragments formed when a drop impacts a thin film. High-speed recording allows for quantification of transient dynamics. For the viscous liquids investigated here, a multimodal size distribution is observed.

More Details

Temperature measurements in metalized propellant combustion using hybrid fs/ps coherent anti-Stokes Raman scattering

Applied Optics

Kearney, S.P.; Guildenbecher, Daniel R.

We apply ultrafast pure-rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning, aluminized ammonium-perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laserbased diagnostics, with intense background luminosity and scattering from hot metal particles as large as several hundred micrometers in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminum-particle-seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulate-enhanced laser-induced breakdown. Introduction of femtosecond/picosecond (fs/ps) laser pulses improves CARS detection by providing time-gated elimination of strong nonresonant background interference. Single-laser-shot fs/ps CARS spectra were acquired from the burning propellant plume, with picosecond probe-pulse delays of 0 and 16 ps from the femtosecond pump and Stokes pulses. At zero delay, nonresonant background overwhelms the Raman-resonant spectroscopic features. Time-delayed probing results in the acquisition of background-free spectra that were successfully fit for temperature and relative oxygen content. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements with the CARS measurement volume positioned within 3 mm or less of the burning propellant surface. The results show that ultrafast CARS is a potentially enabling technology for probing harsh, particle-laden flame environments.

More Details

High-speed (20 kHz) digital in-line holography for transient particle tracking and sizing in multiphase flows

Applied Optics

Guildenbecher, Daniel R.; Cooper, Marcia A.; Sojka, Paul E.

High-speed (20 kHz) digital in-line holography (DIH) is applied for 3D quantification of the size and velocity of fragments formed from the impact of a single water drop onto a thin film of water and burning aluminum particles from the combustion of a solid rocket propellant. To address the depth-of-focus problem in DIH, a regression-based multiframe tracking algorithm is employed, and out-of-plane experimental displacement accuracy is shown to be improved by an order-of-magnitude. Comparison of the results with previous DIH measurements using low-speed recording shows improved positional accuracy with the added advantage of detailed resolution of transient dynamics from single experimental realizations. The method is shown to be particularly advantageous for quantification of particle mass flow rates. For the investigated particle fields, the mass flows rates, which have been automatically measured from single experimental realizations, are found to be within 8% of the expected values.

More Details

KHz rate digital in-line holography applied to quantify secondary droplets from the aerodynamic breakup of a liquid column in a shock-tube

54th AIAA Aerospace Sciences Meeting

Guildenbecher, Daniel R.; Wagner, Justin W.; Olles, Joseph D.; Chen, Yi; DeMauro, Edward P.; Farias, Paul A.; Grasser, Thomas W.; Sojka, Paul E.

The breakup of liquids due to aerodynamic forces has been widely studied. However, the literature contains limited quantified data on secondary droplet sizes, particularly as a function of time. Here, a column of liquid water is subjected to a step change in relative gas velocity using a shock tube. A unique digital in-line holography (DIH) configuration is proposed which quantifies the secondary droplets sizes, three-dimensional position, and three-component velocities at 100 kHz. Results quantify the detailed evolution of the characteristic mean diameters and droplet size-velocity correlations as a function of distance downstream from the initial location of the water column. Accuracy of the measurements is confirmed through mass balance. These data give unprecedented detail on the breakup process which will be useful for improved model development and validation.

More Details

A preliminary comparison of three dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography

54th AIAA Aerospace Sciences Meeting

Munz, Elise D.; Thurow, Brian S.; Guildenbecher, Daniel R.; Farias, Paul A.

Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenoptic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.

More Details

Pulse-burst PIV measurements of transient phenomena in a shock tube

54th AIAA Aerospace Sciences Meeting

Wagner, Justin W.; Beresh, Steven J.; DeMauro, Edward P.; Casper, Katya M.; Guildenbecher, Daniel R.; Pruett, Brian O.; Farias, Paul A.

Time-resolved particle image velocimetry (TR-PIV) measurements were made in a shock tube using a pulse-burst laser. Two transient flowfields were investigated including the baseline flow in the empty shock tube and the wake growth downstream of a cylinder spanning the width of the test section. Boundary layer growth was observed following the passage of the incident shock in the baseline flow, while the core flow velocity increased with time. The measured core flow acceleration was compared to that predicted using a classical unsteady boundary layer growth model. The model typically provided good estimates of core flow acceleration at early times, but then typically underestimated the acceleration. As a result of wall boundary layers, a significant amount of spatial non-uniformity remained in the flow following the passage of the end-wall reflected shock, which could be an important factor in combustion chemistry experiments. In the transient wake growth measurements, the wake downstream of the cylinder was symmetric immediately following the passage of the incident shock. At later times (≈ 0.5 ms), the wake transitioned to a von Kármán vortex street. The TR-PIV data were bandpass filtered about the vortex shedding frequency to reveal additional details on the transient wake growth.

More Details

Hybrid fs/ps CARS for sooting and particle-laden flames

54th AIAA Aerospace Sciences Meeting

Hoffmeister, Kathryn N.; Guildenbecher, Daniel R.; Kearney, S.P.

We report the application of ultrafast rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning aluminized ammonium perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laserbased diagnostics, with intense background luminosity, scattering and beam obstruction from hot metal particles that can be as large as several hundred microns in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminumparticle- seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulateenhanced laser-induced breakdown. Introduction of fs/ps laser pulses enables CARS detection at reduced pulse energies, decreasing the likelihood of breakdown, while simultaneously providing time-gated elimination of any nonresonant background interference. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements from the fs/ps rotational CARS measurement volume positioned within 3 mm or less of the burning propellant surface. Preliminary results in canonical flames are presented using a hybrid fs/ps vibrational CARS system to demonstrate our progress towards acquiring vibrational CARS measurements for more accurate temperatures in the very high temperature propellant burns.

More Details

Optical phase-conjugate digital inline holography for correcting aberrations in particle-laden flames

54th AIAA Aerospace Sciences Meeting

Hoffmeister, Kathryn N.; Kearney, S.P.; Guildenbecher, Daniel R.

While historically there have been many demonstrations of phase-conjugate holography to correct for noise created by phase distortions, the technique has not been applied to modern digital inline holographic measurements. Here, we present the theory and initial experiments exploring the impact of using phase-conjugate digital inline holography (PCDIH) to reduce noise produced by phase distortions through index-of-refraction gradients, such as would be experienced in a combustion environment. We demonstrate the ability to measure 3D object locations using PCDIH and correct for some types of disturbances. To quantify the technique, a plasma generator is used to produce strong indexof- refraction changes in room air. Object position errors in these measurements from both traditional DIH and PCDIH are compared. Preliminary results suggest that the use of PCDIH could potentially reduce positional error by approximately half when measuring through phase disturbances.

More Details

Hybrid fs/ps CARS for Sooting and Particle-laden Flames

Hoffmeister, Kathryn N.; Guildenbecher, Daniel R.; Kearney, S.P.

We report the application of ultrafast rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning aluminized ammonium perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laserbased diagnostics, with intense background luminosity, scattering and beam obstruction from hot metal particles that can be as large as several hundred microns in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminumparticle- seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulateenhanced laser-induced breakdown. Introduction of fs/ps laser pulses enables CARS detection at reduced pulse energies, decreasing the likelihood of breakdown, while simultaneously providing time-gated elimination of any nonresonant background interference. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements from the fs/ps rotational CARS measurement volume positioned within 3 mm or less of the burning propellant surface. Preliminary results in canonical flames are presented using a hybrid fs/ps vibrational CARS system to demonstrate our progress towards acquiring vibrational CARS measurements for more accurate temperatures in the very high temperature propellant burns.

More Details

A Preliminary Comparison of Three Dimensional Particle Tracking and Sizing using Plenoptic Imaging and Digital In-line Holography [PowerPoint]

Guildenbecher, Daniel R.; Munz, Elise D.; Farias, Paul A.; Thruow, Brian S.

Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.

More Details

Temperature, Oxygen, and Soot-Volume-Fraction Measurements in a Turbulent C2H4-Fueled Jet Flame

Kearney, S.P.; Guildenbecher, Daniel R.; Winters, Caroline W.; Grasser, Thomas W.; Farias, Paul A.; Hewson, John C.

We present a detailed set of measurements from a piloted, sooting, turbulent C 2 H 4 - fueled diffusion flame. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) is used to monitor temperature and oxygen, while laser-induced incandescence (LII) is applied for imaging of the soot volume fraction in the challenging jet-flame environment at Reynolds number, Re = 20,000. Single-laser shot results are used to map the mean and rms statistics, as well as probability densities. LII data from the soot-growth region of the flame are used to benchmark the soot source term for one-dimensional turbulence (ODT) modeling of this turbulent flame. The ODT code is then used to predict temperature and oxygen fluctuations higher in the soot oxidation region higher in the flame.

More Details

Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film

Experiments in Fluids

Guildenbecher, Daniel R.; Engvall, Luke; Gao, Jian; Grasser, Thomas W.; Reu, Phillip L.; Chen, Jun

Digital in-line holography (DIH) is an optical technique which measures particle sizes and their three-dimensional (3D) positions and velocities. Here DIH and a recently proposed hybrid method of particle detection are applied to quantify the secondary droplets generated by the impact of a single drop on a thin film. By leveraging the expected symmetry between in-plane and out-of-plane velocities, experimental depth uncertainty is measured to be approximately 0.7 of the mean droplet diameter. Furthermore, comparison with previous measurements using alternative techniques shows good agreement with the measured temporal evolution of drop number, size, and velocity components. Finally, the power of DIH to extract the complex 3D morphology of the protruding jets is demonstrated. © 2014 Springer-Verlag Berlin Heidelberg.

More Details

Developments in digital in-line holography enable validated measurement of 3D particle field dynamics

Guildenbecher, Daniel R.

Digital in-line holography is an optical technique which can be applied to measure the size, three-dimensional position, and three-component velocity of disperse particle fields. This work summarizes recent developments at Sandia National Laboratories focused on improvement in measurement accuracy, experimental validation, and applications to multiphase flows. New routines are presented which reduce the uncertainty in measured position along the optical axis to a fraction of the particle diameter. Furthermore, application to liquid atomization highlights the ability to measure complex, three-dimensional structures. Finally, investigation of particles traveling at near sonic conditions prove accuracy despite significant experimental noise due to shock-waves.

More Details

Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method

Applied Optics

Guildenbecher, Daniel R.; Reu, Phillip L.

The accuracy of digital in-line holography to detect particle position and size within a 3D domain is evaluated with particular focus placed on detection of nonspherical particles. Dimensionless models are proposed for simulation of holograms from single particles, and these models are used to evaluate the uncertainty of existing particle detection methods. From the lessons learned, a new hybrid method is proposed. This method features automatic determination of optimum thresholds, and simulations indicate improved accuracy compared to alternative methods. To validate this, experiments are performed using quasi-stationary, 3D particle fields with imposed translations. For the spherical particles considered in experiments, the proposed hybrid method resolves mean particle concentration and size to within 4% of the actual value, while the standard deviation of particle depth is less than two particle diameters. Initial experimental results for nonspherical particles reveal similar performance.

More Details
182 Results
182 Results