SPACEWIRE IN THE JOINT ARCHITECTURE STANDARD
Abstract not provided.
Abstract not provided.
The Joint Architecture Standard (JAS) program at Sandia National Laboratories requires the use of a reliable data delivery protocol over SpaceWire. The National Aeronautics and Space Administration at the Goddard Spaceflight Center in Greenbelt, Maryland, developed and specified a reliable protocol for its Geostationary Operational Environment Satellite known as GOES-R Reliable Data Delivery Protocol (GRDDP). The JAS program implemented and tested GRDDP and then suggested a number of modifications to the original specification to meet its program specific requirements. This document details the full RDDP specification as modified for JAS. The JAS Reliable Data Delivery Protocol uses the lower-level SpaceWire data link layer to provide reliable packet delivery services to one or more higher-level host application processes. This document specifies the functional requirements for JRDDP but does not specify the interfaces to the lower- or higher-level processes, which may be implementation-dependent.
Abstract not provided.
Node-based architecture (NBA) designs for future satellite projects hold the promise of decreasing system development time and costs, size, weight, and power and positioning the laboratory to address other emerging mission opportunities quickly. Reconfigurable Field Programmable Gate Array (FPGA) based modules will comprise the core of several of the NBA nodes. Microprocessing capabilities will be necessary with varying degrees of mission-specific performance requirements on these nodes. To enable the flexibility of these reconfigurable nodes, it is advantageous to incorporate the microprocessor into the FPGA itself, either as a hardcore processor built into the FPGA or as a soft-core processor built out of FPGA elements. This document describes the evaluation of three reconfigurable FPGA based processors for use in future NBA systems--two soft cores (MicroBlaze and non-fault-tolerant LEON) and one hard core (PowerPC 405). Two standard performance benchmark applications were developed for each processor. The first, Dhrystone, is a fixed-point operation metric. The second, Whetstone, is a floating-point operation metric. Several trials were run at varying code locations, loop counts, processor speeds, and cache configurations. FPGA resource utilization was recorded for each configuration. Cache configurations impacted the results greatly; for optimal processor efficiency it is necessary to enable caches on the processors. Processor caches carry a penalty; cache error mitigation is necessary when operating in a radiation environment.