Tritium has a unique physical and chemical behavior which causes it to be highly mobile in the environment. As it behaves similarly to hydrogen in the environment, it may also be readily incorporated into the water cycle and other biological processes. These factors and other environmental transformations may also cause the oxidation of an elemental tritium release, resulting in a multiple order of magnitude increase in dose coefficient and radiotoxicity. While source term development and understanding for advanced reactors are still underway, tritium may be a radionuclide of interest. It is thus important to understand how tritium moves through the environment and how the MACCS accident consequence code handles acute tritium releases in an accident scenario. Additionally, existing tritium models may have functionalities that could inform updates to MACCS to handle tritium. In this report tritium transport is reviewed and existing tritium models are summarized in view of potential updates to MACCS.
This report documents a method for the quantitative identification of radionuclides of potential interest for accident consequence analysis involving advanced nuclear reactors. Based on previous qualitative assessments of radionuclide inventories for advanced reactors coupled with the review of a radiological inventory developed for a heat pipe reactor, a 1 Ci activity airborne release was calculated for 137 radionuclides using the MACCS 4.1 code suite. Several assumptions regarding release conditions were made and discussed herein. The potential release of a heat pipe reactor inventory was also modeled following the same assumptions. Results provide an estimation of the relative EARLY and CHRONC phase dose contribution from advanced reactor radionuclides and are normalized to doses from equivalent releases of I-131 and Cs-137, respectively. Ultimately, a list of 69 radionuclides with EARLY or CHRONC dose contributions at least 1/100th that of I-131 or Cs-137, respectively – 48 of which are currently considered for LWR consequence analyses – was identified of being of potential importance for analyses involving a heat pipe reactor.
Multiple physical and chemical forms of a given radionuclide may be released in the event of a nuclear accident. Given that variable forms of an isotope may elicit changes in how that isotope moves through the environment and ultimately impacts human receptors, it is pertinent to understand how nuclear accident consequence models, such as MACCS, account for variable forms. This report documents a review of MACCS modeling capabilities for variability in radionuclide chemical and physical forms. This review centers on the current state-of-practice for dosimetry and deposition modeling of varying radionuclide forms to understand how consistent existing MACCS capabilities are with state of practice. This analysis is also used to inform potential MACCS model upgrades. MACCS conceptual models along with dosimetry and deposition related practices are discussed. Recommendations and suggestions for model improvements are posited.
The nuclear accident consequence analysis code MACCS has traditionally modeled dispersion during downwind transport using a Gaussian plume segment model. MACCS is designed to estimate consequence measures such as air concentrations and ground depositions, radiological doses, and health and economic impacts on a statistical basis over the course of a year to produce annualaveraged output measures. The objective of this work is to supplement the Gaussian atmospheric transport and diffusion (ATD) model currently in MACCS with a new option using the HYSPLIT model. HYSPLIT/MACCS coupling has been implemented, with HYSPLIT as an alternative ATD option. The subsequent calculations in MACCS use the HYSPLIT-generated air concentration, and ground deposition values to calculate the same range of output quantities (dose, health effects, risks, etc.) that can be generated when using the MACCS Gaussian ATD model. Based on the results from the verification test cases, the implementation of the HYSPLIT/MACCS coupling is confirmed. This report contains technical details of the HYSPLIT/MACCS coupling and presents a benchmark analysis using the HYSPLIT/MACCS coupling system. The benchmark analysis, which involves running specific scenarios and sensitivity studies designed to examine how the results generated by the traditional MACCS Gaussian plume segment model compare to the new, higher fidelity HYSPLIT/MACCS modeling option, demonstrates the modeling results that can be obtained by using this new option. The comparisons provided herein can also help decision-makers evaluate the potential benefit of using results based on higher fidelity modeling with the additional computational burden needed to perform the calculations. Three sensitivity studies to investigate the potential impact of alternative modeling options, regarding 1) input meteorological data set, 2) method to estimate stability class, and 3) plume dispersion model for larger distances, on consequence results were also performed. The results of these analyses are provided and discussed in this report.
In WASH - 1400, external exposure from the finite radioactive cloud (cloudshine) is calculated by assuming that the cloud is semi-infinite, the concentration of radioactive material is uniform, and by using a correction factor to account for these approximations. This correction factor is originally based upon formulations by Healy and depends on the effective size of the plume and the distance from the plume center to the receptor. The range of the finite cloud dose correction factor table from WASH - 1400 developed using Healy formulations can be exceeded in certain situations. When the range of the table is exceeded, no extrapolation is performed; rather interpolation at the edge of the table is performed per WASH - 1400. The tabulated values of these finite cloud dose correction factors from WASH - 1400 and the interpolation at the edge of the table have been used in MACCS since its creation. An expanded table of finite cloud dose correction factors is one way to reduce the need of using interpolation at the edge of the table. The generation of an expanded finite cloud dose correction factor table for future use in MACCS is documented in this report.
The NRC’s Non-Light Water Reactor Vision and Strategy report discusses the MACCS code readiness for nearfield analyses. To increase the nearfield capabilities of MACCS, the plume meander model from Ramsdell and Fosmire was integrated into MACCS and the MACCS plume meander model based on U.S. NRC Regulatory Guide 1.145 was updated. Test cases were determined to verify the plume meander model implementation into MACCS 4.1. The results using the implemented MACCS plume meander models match the comparisons with other codes and analytical calculations. This verifies that the additional MACCS plume meander models have been successfully implemented into MACCS 4.1. This report documents the verification of these model implementations into MACCS and a comparison of the results using
This report provides two sets of calculations not presented in previous reports on the technical feasibility of spent nuclear fuel (SNF) disposal directly in dual-purpose canisters (DPCs): 1) thermal calculations for reference disposal concepts using larger 37-PWR size DPC-based waste packages, and 2) analysis and thermal calculations for underground vault-type storage and eventual disposal of DPCs. The reader is referred to the earlier reports (Hardin et al. 2011, 2012, 2013; Hardin and Voegele 2013) for contextual information on DPC direct disposal alternatives.
In the summer of 2020, the National Aeronautics and Space Administration (NASA) plans to launch a spacecraft as part of the Mars 2020 mission. One option for the rover on the proposed spacecraft uses a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to provide continuous electrical and thermal power for the mission. NASA has prepared an Environmental Impact Statement (EIS) in accordance with the National Environmental Policy Act. The EIS includes information on the risks of mission accidents to the general public and on-site workers at the launch complex. The Nuclear Risk Assessment (NRA) addresses the responses of the MMRTG option to potential accident and abort conditions during the launch opportunity for the Mars 2020 mission and the associated consequences. This information provides the technical basis for the radiological risks of the MMRTG option for the EIS. This paper provides a summary of the methods and results used in the NRA.