Publications

110 Results
Skip to search filters

Quantification of morphological change in materials based on image data utilizing machine learning techniques

Beste, Ariana B.; Bolintineanu, Dan S.; Bufford, Daniel C.

Computed tomography (CT) resolution has become high enough to monitor morphological changes due to aging in materials in long-term applications. We explored the utility of the critic of a generative adversarial network (GAN) to automatically detect such changes. The GAN was trained with images of pristine Pharmatose, which is used as a surrogate energetic material. It is important to note that images of the material with altered morphology were only used during the test phase. The GAN-generated images visually reproduced the microstructure of Pharmatose well, although some unrealistic particle fusion was seen. Calculated morphological metrics (volume fraction, interfacial line length, and local thickness) for the synthetic images also showed good agreement with the training data, albeit with signs of mode collapse in the interfacial line length. While the critic exposed changes in particle size, it showed limited ability to distinguish images by particle shape. The detection of shape differences was also a more challenging task for the selected morphological metrics that related to energetic material performance. We further tested the critic with images of aged Pharmatose. Subtle changes due to aging are difficult for the human analyst to detect. Both critic and morphological metrics analysis showed image differentiation.

More Details

Mesostructure Evolution During Powder Compression: Micro-CT Experiments and Particle-Based Simulations

Conference Proceedings of the Society for Experimental Mechanics Series

Cooper, Marcia A.; Clemmer, Joel T.; Silling, Stewart A.; Bufford, Daniel C.; Bolintineanu, Dan S.

Powders under compression form mesostructures of particle agglomerations in response to both inter- and intra-particle forces. The ability to computationally predict the resulting mesostructures with reasonable accuracy requires models that capture the distributions associated with particle size and shape, contact forces, and mechanical response during deformation and fracture. The following report presents experimental data obtained for the purpose of validating emerging mesostructures simulated by discrete element method and peridynamic approaches. A custom compression apparatus, suitable for integration with our micro-computed tomography (micro-CT) system, was used to collect 3-D scans of a bulk powder at discrete steps of increasing compression. Details of the apparatus and the microcrystalline cellulose particles, with a nearly spherical shape and mean particle size, are presented. Comparative simulations were performed with an initial arrangement of particles and particle shapes directly extracted from the validation experiment. The experimental volumetric reconstruction was segmented to extract the relative positions and shapes of individual particles in the ensemble, including internal voids in the case of the microcrystalline cellulose particles. These computationally determined particles were then compressed within the computational domain and the evolving mesostructures compared directly to those in the validation experiment. The ability of the computational models to simulate the experimental mesostructures and particle behavior at increasing compression is discussed.

More Details

Inelastic peridynamic model for molecular crystal particles

Computational Particle Mechanics

Silling, Stewart A.; Barr, Christopher M.; Cooper, Marcia A.; Lechman, Jeremy B.; Bufford, Daniel C.

The peridynamic theory of solid mechanics is applied to modeling the deformation and fracture of micrometer-sized particles made of organic crystalline material. A new peridynamic material model is proposed to reproduce the elastic–plastic response, creep, and fracture that are observed in experiments. The model is implemented in a three-dimensional, meshless Lagrangian simulation code. In the small deformation, elastic regime, the model agrees well with classical Hertzian contact analysis for a sphere compressed between rigid plates. Under higher load, material and geometrical nonlinearity is predicted, leading to fracture. The material parameters for the energetic material CL-20 are evaluated from nanoindentation test data on the cyclic compression and failure of micrometer-sized grains.

More Details

Enabling Particulate Materials Processing Science for High-Consequence, Small-Lot Precision Manufacturing

Bolintineanu, Dan S.; Lechman, Jeremy B.; Bufford, Daniel C.; Clemmer, Joel T.; Cooper, Marcia A.; Erikson, William W.; Silling, Stewart A.; Oliver, Michael S.; Chavez, Andres A.; Schmalbach, Kevin M.; Mara, Nathan A.

This Laboratory Directed Research and Development project developed and applied closely coupled experimental and computational tools to investigate powder compaction across multiple length scales. The primary motivation for this work is to provide connections between powder feedstock characteristics, processing conditions, and powder pellet properties in the context of powder-based energetic components manufacturing. We have focused our efforts on multicrystalline cellulose, a molecular crystalline surrogate material that is mechanically similar to several energetic materials of interest, but provides several advantages for fundamental investigations. We report extensive experimental characterization ranging in length scale from nanometers to macroscopic, bulk behavior. Experiments included nanoindentation of well-controlled, micron-scale pillar geometries milled into the surface of individual particles, single-particle crushing experiments, in-situ optical and computed tomography imaging of the compaction of multiple particles in different geometries, and bulk powder compaction. In order to capture the large plastic deformation and fracture of particles in computational models, we have advanced two distinct meshfree Lagrangian simulation techniques: 1.) bonded particle methods, which extend existing discrete element method capabilities in the Sandia-developed , open-source LAMMPS code to capture particle deformation and fracture and 2.) extensions of peridynamics for application to mesoscale powder compaction, including a novel material model that includes plasticity and creep. We have demonstrated both methods for simulations of single-particle crushing as well as mesoscale multi-particle compaction, with favorable comparisons to experimental data. We have used small-scale, mechanical characterization data to inform material models, and in-situ imaging of mesoscale particle structures to provide initial conditions for simulations. Both mesostructure porosity characteristics and overall stress-strain behavior were found to be in good agreement between simulations and experiments. We have thus demonstrated a novel multi-scale, closely coupled experimental and computational approach to the study of powder compaction. This enables a wide range of possible investigations into feedstock-process-structure relationships in powder-based materials, with immediate applications in energetic component manufacturing, as well as other particle-based components and processes.

More Details

The mechanical response of micron-sized molecular crystals

MRS Advances

Barr, Christopher M.; Cooper, Marcia A.; Lechman, Jeremy B.; Bufford, Daniel C.

Microstructures and corresponding properties of compacted powders ultimately depend on the mechanical response of individual particles. In principle, computational simulations can predict the results of powder compaction processes, but the selection of appropriate models for both particle–particle interactions and particle deformations across all relevant length scales remain nontrivial tasks, especially in material systems lacking detailed mechanical property information. The work presented here addresses these issues by conducting uniaxial compressions in situ inside of a scanning electron microscope to characterize the mechanical response of individual micron-sized particles of a molecular crystal, hexanitrohexaazaisowurtzitane (CL-20). This experimental approach enabled the collection of quantitative force and displacement data alongside simultaneous imaging to capture morphology changes. The results reveal information about elastic deformation, yield, plastic deformation, creep, and fracture phenomena. Accordingly, this work demonstrates a generalizable approach for assessing the mechanical response of individual micron-sized molecular crystal particles and utilizing those responses in particle-level models. Graphic abstract: [Figure not available: see fulltext.].

More Details

Nanomechanical mapping and strain rate sensitivity of microcrystalline cellulose

Journal of Materials Research

Schmalbach, Kevin M.; Lin, Albert C.; Bufford, Daniel C.; Wang, Chenguang; Sun, Changquan C.; Mara, Nathan A.

Nanoindentation provides a convenient and high-throughput means for mapping mechanical properties and for measuring the strain rate sensitivity of a material. Here, nanoindentation was applied to the study of microcrystalline cellulose. Constant strain rate nanoindentation revealed a depth dependence of nanohardness and modulus, mostly attributed to material densification. Nanomechanical maps of storage modulus and hardness resolved the shape and size of voids present in larger particles. In smaller, denser particles, however, where storage modulus varied little spatially, there was still some spatial dependence of hardness, which can be explained by cellulose’s structural anisotropy. Additionally, hardness changed with the indentation strain rate in strain rate jump tests. The resulting strain rate sensitivity values were found to be in agreement with those obtained by other techniques in the literature. Graphic abstract: [Figure not available: see fulltext.]

More Details

Understanding the TiH(2-x)/TiOy System at Elevated Temperature: A Literature Review

Beste, Ariana B.; Bufford, Daniel C.

Titanium hydride of varying TiH stoichiometry is used in pyrotechnic compositions. In order to yield consistent performance, manufacturing processes must be developed to ensure precise and reproducible material properties, including composition and morphology. Legacy synthesis protocols are not comprehensive nor are the required apparatuses still available. To guide the development of novel production procedures, this report reviews literature on relevant chemical reactions and diffusion events occurring at elevated temperature in the TiH(2-x)/TiOy system. Titanium hydride exposed to air spontaneously forms a passivating oxide layer. Upon heating, significant hydrogen release, which is accompanied by changes to the surface oxide layer, is noted by 375–400°C. At higher temperatures (above about 500°C) the oxide layer is reported to be essentially nonexistent as a result of oxide-layer dissolution processes and, potentially, oxide-layer reduction due to water formation. Based on the reviewed literature, we hypothesize that, by 500°C, the surface layer consists of an oxyhydride phase, which is a solid solution of oxygen in titanium hydride. We believe that hydrogen release from titanium hydride is controlled by the kinetics of molecular hydrogen desorption on the oxyhydride surface. No literature data is available for corresponding activation energies of the dynamic desorption process, and the equilibrium phase diagram of this three-component system remains largely unexplored as well. These gaps in knowledge might be addressed through coordinated computational modeling and experimental efforts.

More Details

Exploring Coupled Extreme Environments via In-situ Transmission Electron Microscopy

Microscopy Today

Parrish, Riley J.; Bufford, Daniel C.; Frazer, David M.; Taylor, Caitlin T.; Gutierrez-Kolar, Jacob G.; Buller, Daniel L.; Boyce, Brad B.; Hattar, Khalid M.

In-situ transmission electron microscopy (TEM) provides an avenue to explore time-dependent nanoscale material changes induced by a wide range of environmental conditions that govern material performance and degradation. The In-situ Ion Irradiation TEM (I3TEM) at Sandia National Laboratories is a JEOL 2100 microscope that has been highly modified with an array of hardware and software that makes it particularly well suited to explore fundamental mechanisms that arise from coupled extreme conditions. Here, examples pertaining to multibeam ion irradiation, rapid thermal cycling, and nanomechanical testing on the I3TEM are highlighted, along with prospective advancements in the field of in-situ microscopy.

More Details

Compression behavior of microcrystalline cellulose spheres: Single particle compression and confined bulk compression across regimes

Powder Technology

Cooper, Marcia A.; Oliver, Michael S.; Bufford, Daniel C.; White, Benjamin C.; Lechman, Jeremy B.

Particle characteristics can drastically influence the process-structure-property-performance aspects of granular materials in compression. We aim to computationally simulate the mechanical processes of stress redistribution in compacts including the kinematics of particle rearrangement during densification and particle deformation leading to fragmentation. Confined compression experiments are conducted with three sets of commercial microcrystalline cellulose particles nearly spherical in shape with different mean particle size. Experimentally measured compression curves from tall powder columns are fitted with the Kenkre et al. (J. of American Chemical Society, Vol. 79, No. 12) model. This model provides a basis to derive several common two-parameter literature models and as a framework to incorporate statistical representations of critical particle behaviors. We focus on the low-stress compression data and the model comparisons typically not discussed in the literature. Additional single particle compressions report fracture strength with particle size for comparison to the apparent particle strength extracted from bulk compression data.

More Details

Localized corrosion of low-carbon steel at the nanoscale

npj Materials Degradation

Hayden, Steven C.; Chisholm, Claire; Grudt, Rachael O.; Aguiar, Jeffery A.; Mook, William M.; Kotula, Paul G.; Pilyugina, Tatiana S.; Bufford, Daniel C.; Hattar, Khalid M.; Kucharski, Timothy J.; Taie, Ihsan M.; Ostraat, Michele L.; Jungjohann, Katherine L.

Mitigating corrosion remains a daunting challenge due to localized, nanoscale corrosion events that are poorly understood but are known to cause unpredictable variations in material longevity. Here, the most recent advances in liquid-cell transmission electron microscopy were employed to capture the advent of localized aqueous corrosion in carbon steel at the nanoscale and in real time. Localized corrosion initiated at a triple junction formed by a solitary cementite grain and two ferrite grains and then continued at the electrochemically-active boundary between these two phases. With this analysis, we identified facetted pitting at the phase boundary, uniform corrosion rates from the steel surface, and data that suggest that a re-initiating galvanic corrosion mechanism is possible in this environment. These observations represent an important step toward atomically defining nanoscale corrosion mechanisms, enabling the informed development of next-generation inhibition technologies and the improvement of corrosion predictive models.

More Details

Effects of crystallographic and geometric orientation on ion beam sputtering of gold nanorods

Scientific Reports

Hinks, J.A.; Hibberd, F.; Hattar, K.; Ilinov, A.; Bufford, Daniel C.; Djurabekova, F.; Greaves, G.; Kuronen, A.; Donnelly, S.E.; Nordlund, K.

Nanostructures may be exposed to irradiation during their manufacture, their engineering and whilst in-service. The consequences of such bombardment can be vastly different from those seen in the bulk. In this paper, we combine transmission electron microscopy with in situ ion irradiation with complementary computer modelling techniques to explore the physics governing the effects of 1.7 MeV Au ions on gold nanorods. Phenomena surrounding the sputtering and associated morphological changes caused by the ion irradiation have been explored. In both the experiments and the simulations, large variations in the sputter yields from individual nanorods were observed. These sputter yields have been shown to correlate with the strength of channelling directions close to the direction in which the ion beam was incident. Craters decorated by ejecta blankets were found to form due to cluster emission thus explaining the high sputter yields.

More Details

Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe

Scripta Materialia

Furnish, Timothy A.; Bufford, Daniel C.; Ren, Fang; Mehta, Apurva; Hattar, Khalid M.; Boyce, Brad B.

Prior studies on the high-cycle fatigue behavior of nanocrystalline metals have shown that fatigue fracture is associated with abnormal grain growth (AGG). However, those previous studies have been unable to determine if AGG precedes fatigue crack initiation, or vice-versa. The present study shows that AGG indeed occurs prior to crack formation in nanocrystalline Ni-Fe by using a recently developed synchrotron X-ray diffraction modality that has been adapted for in-situ analysis. The technique allows fatigue tests to be interrupted at the initial signs of the AGG process, and subsequent microscopy reveals the precursor damage state preceding crack initiation.

More Details

Irradiation-induced creep in metallic nanolaminates characterized by In situ TEM pillar nanocompression

Journal of Nuclear Materials

Dillon, Shen J.; Bufford, Daniel C.; Jawaharram, Gowtham S.; Liu, Xuying; Lear, Calvin; Hattar, Khalid M.; Averback, Robert S.

This work reports on irradiation-induced creep (IIC) measured on nanolaminate (Cu-W and Ni-Ag) and nanocrystalline alloys (Cu-W) at room temperature using a combination of heavy ion irradiation and nanopillar compression performed concurrently in situ in a transmission electron microscope. Appreciable IIC is observed in multilayers with 50 nm layer thicknesses at high stress, ≈½ the yield strength, but not in multilayers with only 5 nm layer thicknesses.

More Details

Cavity formation in molybdenum studied in situ in TEM

Fusion Science and Technology

Bufford, Daniel C.; Snow, C.S.; Hattar, K.

We investigated the microstructural response of molybdenum, with and without prior exposure to gaseous deuterium, during helium irradiation and subsequent annealing. Ion irradiations and annealing experiments were performed in situ in a transmission electron microscope, enabling real time observation of the microstructural evolution. Cavities approximately 0.5 nm in diameter were formed in deuterium-exposed molybdenum at a fluence of 1.7 × 1015 helium cm-2, but did not grow appreciably after increasing the fluence by two orders of magnitude or after brief room temperature aging. Similar cavities were not apparent in pristine molybdenum. Larger cavities appeared in both samples during in situ annealing to 1063 K, without any clear differences between the two samples. The evolving cavity morphologies are discussed in terms of defect production, microstructure, and sample geometry.

More Details

The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe

Journal of Materials Science

Furnish, Timothy A.; Mehta, A.; Van Campen, D.; Bufford, Daniel C.; Hattar, K.; Boyce, B.L.

Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. However, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In this study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. This study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.

More Details

Mechanisms for Ductile Rupture - FY16 ESC Progress Report

Boyce, Brad B.; Carroll, Jay D.; Noell, Philip N.; Bufford, Daniel C.; Clark, Blythe C.; Hattar, Khalid M.; Lim, Hojun L.; Battaile, Corbett C.

Ductile rupture in metals is generally a multi-step process of void nucleation, growth, and coalescence. Particle decohesion and particle fracture are generally invoked as the primary microstructural mechanisms for room-temperature void nucleation. However, because high-purity materials also fail by void nucleation and coalescence, other microstructural features must also act as sites for void nucleation. Early studies of void initiation in high-purity materials, which included post-mortem fracture surface characterization using scanning electron microscopy (SEM) and high-voltage electron microscopy (HVEM) and in-situ HVEM observations of fracture, established the presence of dislocation cell walls as void initiation sites in high-purity materials. Direct experimental evidence for this contention was obtained during in-situ HVEM tensile tests of Be single crystals. Voids between 0.2 and 1 μm long appeared suddenly along dislocation cell walls during tensile straining. However, subsequent attempts to replicate these results in other materials, particularly α -Fe single crystals, were unsuccessful because of the small size of the dislocation cells, and these remain the only published in-situ HVEM observations of void nucleation at dislocation cell walls in the absence of a growing macrocrack. Despite this challenge, other approaches to studying void nucleation in high-purity metals also indicate that dislocation cell walls are nucleation sites for voids.

More Details

High Cycle Fatigue in the Transmission Electron Microscope

Nano Letters

Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; Syed Asif, S.A.; Boyce, Brad B.; Hattar, Khalid M.

One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this study, the tension-tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were applied at frequencies from one to several hundred hertz, enabling accumulations of 106 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ∼10-12 m·cycle-1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. These observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.

More Details

Room Temperature Deformation Mechanisms of Alumina Particles Observed from In Situ Micro-compression and Atomistic Simulations

Journal of Thermal Spray Technology

Sarobol, Pylin S.; Chandross, M.; Carroll, Jay D.; Mook, William M.; Bufford, Daniel C.; Boyce, Brad B.; Hattar, Khalid M.; Kotula, Paul G.; Hall, Aaron C.

Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containing numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. The identified deformation mechanisms provide insight into feedstock design for AD.

More Details

Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling

Applied Physics Letters

Bufford, Daniel C.; Abdeljawad, Fadi F.; Foiles, Stephen M.; Hattar, K.

Nanostructuring has been proposed as a method to enhance radiation tolerance, but many metallic systems are rejected due to significant concerns regarding long term grain boundary and interface stability. This work utilized recent advancements in transmission electron microscopy (TEM) to quantitatively characterize the grain size, texture, and individual grain boundary character in a nanocrystalline gold model system before and after in situ TEM ion irradiation with 10 MeV Si. The initial experimental measurements were fed into a mesoscale phase field model, which incorporates the role of irradiation-induced thermal events on boundary properties, to directly compare the observed and simulated grain growth with varied parameters. The observed microstructure evolution deviated subtly from previously reported normal grain growth in which some boundaries remained essentially static. In broader terms, the combined experimental and modeling techniques presented herein provide future avenues to enhance quantification and prediction of the thermal, mechanical, or radiation stability of grain boundaries in nanostructured crystalline systems.

More Details

Feasibility of Observing and Characterizing Single Ion Strikes in Microelectronic Components

Dingreville, Remi P.; Hattar, Khalid M.; Bufford, Daniel C.

The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. A single high-energy charged particle can degrade or permanently destroy the microelectronic component, potentially altering the course or function of the systems. Disruption of the the crystalline structure through the introduction of quasi-stable defect structures can change properties from semiconductor to conductor. Typically, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. In this LDRD Express, in-situ ion irradiation transmission microscopy (TEM) in-situ TEM experiments combined with atomistic simulations have been conducted to determine the feasibility of imaging and characterizing the defect structure resulting from a single cascade in silicon. In-situ TEM experiments have been conducted to demonstrate that a single ion strike can be observed in Si thin films with nanometer resolution in real time using the in-situ ion irradiation transmission electron microscope (I3TEM). Parallel to this experimental effort, ion implantation has been numerically simulated using Molecular Dynamics (MD). This numerical framework provides detailed predictions of the damage and follow the evolution of the damage during the first nanoseconds. The experimental results demonstrate that single ion strike can be observed in prototypical semiconductors.

More Details

Concurrent in situ ion irradiation transmission electron microscope

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Hattar, K.; Bufford, Daniel C.; Buller, Daniel L.

An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8-30 keV) during high-energy heavy ion irradiation (0.8-48 MeV). Initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities. © 2014 The Authors. Published by Elsevier B.V.

More Details

Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression

Sarobol, Pylin S.; Chandross, M.; Carroll, Jay D.; Mook, William M.; Boyce, Brad B.; Kotula, Paul G.; McKenzie, Bonnie B.; Bufford, Daniel C.; Hall, Aaron C.

The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and significant plastic deformation during compressi on . On the other hand, the micron sized Al 2 O 3 particles exhibited brittle f racture in compression. In situ compression experiments showed 3um Al 2 O 3 particles fractured into pieces without observable plastic deformation in compression. Particle deformation behaviors will be used to inform Al 2 O 3 coating deposition parameters and particle - particle bonding in the consolidated Al 2 O 3 coatings.

More Details

In Situ Electron Microscopy of Helium Bubble Implantation in Metal Hydrides

Hattar, Khalid M.; Bufford, Daniel C.; Robinson, David R.; Snow, Clark S.

Here we investigated the microstructural response of various Pd physically vapor deposited films and Er and ErD2 samples prepared from neutron Tube targets to implanted He via in situ ion irradiation transmission electron microscopy and subsequent in situ annealing experiments. Small bubbles formed in both systems during implantation, but did not grow with increasing fluence or a short duration room temperature aging (weeks). Annealing produced large cavities with different densities in the two systems. The ErD2 showed increased cavity nucleation compared to Er. The spherical bubbles formed from high fluence implantation and rapid annealing in both Er and ErD2 cases differed from microstructures of naturally aged tritiated samples. Further work is still underway to determine the transition in bubble shape in the Er samples, as well as the mechanism for evolution in Pd films.

More Details
110 Results
110 Results