Publications

Results 1–25 of 118
Skip to search filters

Electromagnetic Pulse – Resilient Electric Grid for National Security: Research Program Executive Summary

Guttromson, Ross G.; Lawton, Craig R.; Halligan, Matthew H.; Huber, Dale L.; Flicker, Jack D.; Hoffman, Matthew J.; Bowman, Tyler B.; Campione, Salvatore; Clem, Paul G.; Fiero, Andrew F.; Hansen, Clifford H.; Llanes, Rodrigo E.; Pfeiffer, Robert A.; Pierre, Brian J.; Martin, Luis S.; Sanabria, David E.; Schiek, Richard S.; Slobodyan, Oleksiy S.; Warne, Larry K.

Sandia National Laboratories sponsored a three-year internally funded Laboratory Directed Research and Development (LDRD) effort to investigate the vulnerabilities and mitigations of a high-altitude electromagnetic pulse (HEMP) on the electric power grid. The research was focused on understanding the vulnerabilities and potential mitigations for components and systems at the high voltage transmission level. Results from the research included a broad array of subtopics, covered in twenty-three reports and papers, and which are highlighted in this executive summary report. These subtopics include high altitude electromagnetic pulse (HEMP) characterization, HEMP coupling analysis, system-wide effects, and mitigating technologies.

More Details

Magnetic Tunability in RE-DOBDC MOFs via NOx Acid Gas Adsorption

ACS Applied Materials and Interfaces

Henkelis, Susan E.; Huber, Dale L.; Nenoff, T.M.

The magnetic susceptibility of NOx-loaded RE-DOBDC (rare earth (RE): Y, Eu, Tb, Yb; DOBDC: 2,5-dihydroxyterephthalic acid) metal–organic frameworks (MOFs) is unique to the MOF metal center. RE-DOBDC samples were synthesized, activated, and subsequently exposed to humid NOx. Each NOx-loaded MOF was characterized by powder X-ray diffraction, and the magnetic characteristics were probed by using a VersaLab vibrating sample magnetometer (VSM). Lanthanide-containing RE-DOBDC (Eu, Tb, Yb) are paramagnetic with a reduction in paramagnetism upon adsorption of NOx. Y-DOBDC has a diamagnetic moment with a slight reduction upon adsorption of NOx. The magnetic susceptibility of the MOF is determined by the magnetism imparted by the framework metal center. The electronic population of orbitals contributes to determining the extent of magnetism and change with NOx (electron acceptor) adsorption. Eu-DOBDC results in the largest mass magnetization change upon adsorption of NOx due to more available unpaired f electrons. Experimental changes in magnetic moment were supported by density functional theory (DFT) simulations of NOx adsorbed in lanthanide Eu-DOBDC and transition metal Y-DOBDC MOFs.

More Details

Design and Evaluation of Nano-Composite Core Inductors for Efficiency Improvement in High- Frequency Power Converters

Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC

Langlois, Eric L.; Watt, John; Huber, Dale L.; McDonough, Matthew; Monson, Todd M.; Neely, Jason

This paper evaluates the performance of a novel nano-composite core inductor. In this digest, a brief explanation of the superparamagnetic magnetite nanoparticle core is given along with magnetic characterization results and simulated design parameters and dimensions. A nearly flat relative permeability (μr) of around 5 is measured for the magnetic material to 1 MHz. A synchronous buck converter with nano-composite inductor was constructed and evaluated; the converter demonstrates a 1% improvement in conversion efficiency at higher currents (4% reduction in electrical losses), compared to an identical circuit with a benchmark commercial ferrite inductor.

More Details

Soft matter and nanomaterials characterization by cryogenic transmission electron microscopy

MRS Bulletin

Watt, John D.; Huber, Dale L.; Stewart, P.

Soft matter has historically been an unlikely candidate for investigation by electron microscopy techniques due to damage by the electron beam as well as inherent instability under a high vacuum environment. Characterization of soft matter has often relied on ensemble-scattering techniques. The recent development of cryogenic transmission electron microscopy (cryo-TEM) provides the soft matter community with an exciting opportunity to probe the structure of soft materials in real space. Cryo-TEM reduces beam damage and allows for characterization in a native, frozen-hydrated state, providing direct visual representation of soft structure. This article reviews cryo-TEM in soft materials characterization and illustrates how it has provided unique insights not possible by traditional ensemble techniques. Soft matter systems that have benefited from the use of cryo-TEM include biological-based “soft” nanoparticles (e.g., viruses and conjugates), synthetic polymers, supramolecular materials as well as the organic–inorganic interface of colloidal nanoparticles. We conclude that while many challenges remain, such as combining structural and chemical analyses; the opportunity for soft matter research to leverage newly developed cryo-TEM techniques continues to excite.

More Details

Soft magnetic materials for a sustainable and electrified world

Science

Silveyra, Josefina M.; Ferrara, Enzo; Huber, Dale L.; Monson, Todd M.

Soft magnetic materials are key to the efficient operation of the next generation of power electronics and electrical machines (motors and generators). Many new materials have been introduced since Michael Faraday's discovery of magnetic induction, when iron was the only option. However, as wide bandgap semiconductor devices become more common in both power electronics and motor controllers, there is an urgent need to further improve soft magnetic materials.These improvements will be necessary to realize the full potential in efficiency, size, weight, and power of high-frequency power electronics and high-rotational speed electrical machines. Here we provide an introduction to the field of soft magnetic materials and their implementation in power electronics and electrical machines. Additionally, we review the most promising choices available today and describe emerging approaches to create even better soft magnetic materials.

More Details

Gram scale synthesis of Fe/FexOy core-shell nanoparticles and their incorporation into matrix-free superparamagnetic nanocomposites

Journal of Materials Research

Watt, John D.; Bleier, Grant C.; Romero, Zachary W.; Hance, Bradley G.; Bierner, Jessica A.; Monson, Todd M.; Huber, Dale L.

Significant reductions recently seen in the size of wide-bandgap power electronics have not been accompanied by a relative decrease in the size of the corresponding magnetic components. To achieve this, a new generation of materials with high magnetic saturation and permeability are needed. Here, we develop gram-scale syntheses of superparamagnetic Fe/FexOy core-shell nanoparticles and incorporate them as the magnetic component in a strongly magnetic nanocomposite. Nanocomposites are typically formed by the organization of nanoparticles within a polymeric matrix. However, this approach can lead to high organic fractions and phase separation; reducing the performance of the resulting material. Here, we form aminated nanoparticles that are then cross-linked using epoxy chemistry. The result is a magnetic nanoparticle component that is covalently linked and well separated. By using this 'matrix-free' approach, we can substantially increase the magnetic nanoparticle fraction, while still maintaining good separation, leading to a superparamagnetic nanocomposite with strong magnetic properties.

More Details

Finite element modeling of nanoscale-enabled microinductors for power electronics

Journal of Materials Research

Langlois, Eric L.; Monson, Todd M.; Huber, Dale L.; Watt, John D.

This article focuses on the finite element modeling of toroidal microinductors, employing first-of-its-kind nanocomposite magnetic core material and superparamagnetic iron nanoparticles covalently cross-linked in an epoxy network. Energy loss mechanisms in existing inductor core materials are covered as well as discussions on how this novel core material eliminates them providing a path toward realizing these low form factor devices. Designs for both a 2 μH output and a 500 nH input microinductor are created via the model for a high-performance buck converter. Both modeled inductors have 50 wire turns, less than 1 cm3 form factors, less than 1 Ω AC resistance, and quality factors, Q's, of 27 at 1 MHz. In addition, the output microinductor is calculated to have an average output power of 7 W and a power density of 3.9 kW/in3 by modeling with the 1st generation iron nanocomposite core material.

More Details

Formation of Metal Nanoparticles Directly from Bulk Sources Using Ultrasound and Application to E-Waste Upcycling

Small

Watt, John D.; Austin, Mariah J.; Simocko, Chester K.; Pete, Douglas V.; Chavez, Jonathan; Ammerman, Lauren M.; Huber, Dale L.

A method for creating nanoparticles directly from bulk metal by applying ultrasound to the surface in the presence of a two-part surfactant system is presented. Implosive collapse of cavitation bubbles near the bulk metal surface generates powerful microjets, leading to material ejection. This liberated material is captured and stabilized by a surfactant bilayer in the form of nanoparticles. The method is characterized in detail using gold, but is also demonstrated on other metals and alloys, and is generally applicable. It is shown that nanoparticles can be produced regardless of the bulk metal form factor, and the method is extended to an environmentally important problem, the reclamation of gold from an electronic waste stream.

More Details
Results 1–25 of 118
Results 1–25 of 118