Publications

14 Results
Skip to search filters

Sierra/SD - How To Manual - 5.10

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Joshi, Sidharth S.; Beale, Dagny; Chen, Mark J.; Pepe, Justin P.

The How To Manual supplements the User’s Manual and the Theory Manual. The goal of the How To Manual is to reduce learning time for complex end to end analyses. These documents are intended to be used together. See the User’s Manual for a complete list of the options for a solution case. All the examples are part of the Sierra/SD test suite. Each runs as is. The organization is similar to the other documents: How to run, Commands, Solution cases, Materials, Elements, Boundary conditions, and then Contact. The table of contents and index are indispensable. The Geometric Rigid Body Modes section is shared with the Users Manual.

More Details

Sierra/SD - User's Manual - 5.8

Beale, Dagny; Bunting, Gregory B.; Chen, Mark J.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Joshi, Sidharth S.; Lindsay, Payton L.; Plews, Julia A.; Stevens, B.L.; Vo, Johnathan V.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user's guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra/SD - Verification Test Manual - 5.8

Beale, Dagny; Bunting, Gregory B.; Chen, Mark J.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Joshi, Sidharth S.; Lindsay, Payton L.; Plews, Julia A.; Stevens, B.L.; Vo, Johnathan V.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Sierra/SD - User's Manual - 5.6

Beale, Dagny; Bunting, Gregory B.; Chen, Mark J.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Joshi, Sidharth S.; Lindsay, Payton L.; Plews, Julia A.; Stevens, B.L.; Vo, Johnathan V.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user's guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Assessment of Metrics Between Acceleration Power Spectral Density Metrics and Failure Criteria

Conference Proceedings of the Society for Experimental Mechanics Series

Beale, Dagny; Larsen, William L.; Coffin, Peter C.

Unlike traditional vibration testing that involves driving a single axis, Multi-Input/Multi-Output (MIMO) testing has become increasingly popular due to its ability to more accurately replicate field responses and failure modes. Quantifying the mismatch between test response and field response is critical to understanding whether the field environment was adequately replicated by the vibration test. Ideally, a vibration test would replicate the field response in terms of deflection shape and magnitude and therefore also the stresses in the test article. However, a clear and concise process or metric to quantify the difference with respect to stress between the test and field environment does not exist. This paper first considers how the Cross Power Spectral Density (CPSD) metrics are affected by part to part variability between the field and the test. Basic properties of an analytical beam model, such as damping and stiffness, are incrementally varied and the effect on the metrics is observed. A more complex model is used to study the correlation between the CPSD metrics and failure mechanisms such as stress and fatigue. A synthetic field environment is generated so that the field stresses and fatigues are known. Many imperfect MIMO tests are constructed as samples for comparison, and several CPSD metric methods are computed for each MIMO case. The calculated CPSD metrics are correlated to the stress and fatigue differences, and the metrics that best correlate to the failure criteria are identified.

More Details

Expansion of Coupled Structural-Acoustic Systems

Conference Proceedings of the Society for Experimental Mechanics Series

Schultz, Ryan S.; Beale, Dagny; Romeo, Ryan

Expansion is useful for predicting response of un-instrumented locations and has traditionally been applied to structures alone. However, there are a range of hollow structures where the influence of the acoustic cavity affects the structural response, and the structural response affects the acoustic response. This structural-acoustic coupling results in a gyroscopically coupled system with complex modes. Though more complicated than modes of a structure alone, the modes of the coupled structural-acoustic system can be used as the basis vectors in an expansion process. In this work, complex modes of a model of a coupled structural-acoustic system are used to expand from a sparse set of structural and acoustic response degrees of freedom to a larger set of both structural and acoustic degrees of freedom. The expansion technique is demonstrated with a finite element model of a hollow cylinder with simulated displacement and pressure measurements, and expansion is studied for both modal and transient responses. Though more nuanced than traditional structure-only expansion problems, the displacement and pressure response of a coupled structural-acoustic system can be expanded using the coupled-system modes.

More Details

Analysis of full-field response from a multi-shaker test

Conference Proceedings of the Society for Experimental Mechanics Series

Beale, Dagny; Owens, Brian; Schultz, Ryan S.

Multi-shaker testing is used to represent the response of a structure to a complex operational load in a laboratory setting. One promising method of multi-shaker testing is Impedance Matched Multi-Axis Testing (IMMAT). IMMAT targets responses at discrete measurement points to control the multiple shaker input excitations, resulting in a laboratory response representative of the expected operational response at the controlled measurement points. However, the relationship between full-field operational responses and the full-field IMMAT response has not been thoroughly explored. Poorly chosen excitation positions may match operational responses at the control points, but over or under excite uncontrolled regions of the structure. Additionally, the effectiveness of the IMMAT method on the whole test structure could depend on the type of operational excitation. Spatially distributed excitations, such as acoustic loading, may be difficult to reproduce over the whole test structure in a lab setting using the point force IMMAT excitations. This work will simulate operational and IMMAT responses of a lab-scale structure to analyze the accuracy of IMMAT at uncontrolled regions of the structure. Determination of the effect of control locations and operational locations on the IMMAT method will lead to better test design and improved predictive capabilities.

More Details
14 Results
14 Results