Electric power is crucial to the function of other infrastructures, as well as to the stability of the economy and the social order. Disruption of commercial electric power service, even for brief periods of time, can create significant consequences to the function of other sectors, and make living in some environments untenable. This analysis, conducted in 2017 for the United States Department of Energy (DOE) as part of the Grid Modernization Laboratory Consortium (GMLC) Initiative, focuses on describing the function of each of the other infrastructure sectors and subsectors, with an eye towards those elements of these sectors that depend on primary electric power service through the commercial electric power grid. It leverages the experience of Sandia analysts in analyzing historical disruptive events, and from the development of capabilities designed to identify the physical, logical, and geographic connectivity between infrastructures. The analysis goes on to identify alternatives for the provision of primary electric power service, and the redundancy of said alternatives, to provide a picture of the sector’s ability to withstand an extended disruption.
A fluid flow in a nanochannel highly depends on the wettability of the channel surface to the fluid. The permeability of the nanochannel is usually very low, largely due to the adhesion of fluid at the solid interfaces. Using molecular dynamics (MD) simulations, we demonstrate that the flow of water in a nanochannel with rough hydrophilic surfaces can be significantly enhanced by the presence of a thin layer of supercritical carbon dioxide (scCO2) at the water-solid interfaces. The thin scCO2 layer acts like an atomistic lubricant that transforms a hydrophilic interface into a super-hydrophobic one and triggers a transition from a stick- to- a slip boundary condition for a nanoscale flow. This work provides an atomistic insight into multicomponent interactions in nanochannels and illustrates that such interactions can be manipulated, if needed, to increase the throughput and energy efficiency of nanofluidic systems.
First-principles molecular dynamics simulations were used to investigate the dissociation of sarin (GB) on the calcium silicate hydrate (CSH) mineral tobermorite (TBM), a surrogate for cement. CSH minerals (including TBM) and amorphous materials of similar composition are the major components of Portland cement, the binding agent of concrete. Metadynamics simulations were used to investigate the effect of the TBM surface and confinement in a microscale pore on the mechanism and free energy of dissociation of GB. Our results indicate that both the adsorption site and the humidity of the local environment significantly affect the sarin dissociation energy. In particular, sarin dissociation in a low-water environment occurs via a dealkylation mechanism, which is consistent with previous experimental studies.
Molecular dynamics simulation was implemented using LAMMPS simulation package (1) to study the diffusivity of He3 and CO2 in NaCl aqueous solution. To simulate at infinite dilute gas concentration, we placed one He3 or CO2 molecule in an initial simulation box of 24x24x33Å3 containing 512 water molecules and a certain number of NaCl molecules depending on the concentration. Initial configuration was set up by placing water, NaCl, and gas molecules into different regions in the simulation box. Calculating diffusion coefficient for one He or CO2 molecule consistently yields poor results. To overcome this, for each simulation at specific conditions (i.e., temperature, pressure, and NaCl concentration), we conducted 50 simulations initiated from 50 different configurations. These configurations are obtained by performing the simulation starting from the initial configuration mentioned above in the NVE ensemble (i.e., constant number of particles, volume, and energy). for 100,000 time steps and collecting one configuration every 2,000 times step. The output temperature of this simulation is about 500K. The collected configurations were then equilibrated for 2ns in the NPT ensemble (i.e., constant number of particles, pressure, and temperature) followed by 9ns simulations in the NVT ensemble (i.e., constant number of particles, volume, and temperature). The time step is 1fs for all simulations.
The current expansion of natural gas (NG) development in the United States requires an understanding of how this change will affect the natural gas industry, downstream consumers, and economic growth in order to promote effective planning and policy development. The impact of this expansion may propagate through the NG system and US economy via changes in manufacturing, electric power generation, transportation, commerce, and increased exports of liquefied natural gas. We conceptualize this problem as supply shock propagation that pushes the NG system and the economy away from its current state of infrastructure development and level of natural gas use. To illustrate this, the project developed two core modeling approaches. The first is an Agent-Based Modeling (ABM) approach which addresses shock propagation throughout the existing natural gas distribution system. The second approach uses a System Dynamics-based model to illustrate the feedback mechanisms related to finding new supplies of natural gas - notably shale gas - and how those mechanisms affect exploration investments in the natural gas market with respect to proven reserves. The ABM illustrates several stylized scenarios of large liquefied natural gas (LNG) exports from the U.S. The ABM preliminary results demonstrate that such scenario is likely to have substantial effects on NG prices and on pipeline capacity utilization. Our preliminary results indicate that the price of natural gas in the U.S. may rise by about 50% when the LNG exports represent 15% of the system-wide demand. The main findings of the System Dynamics model indicate that proven reserves for coalbed methane, conventional gas and now shale gas can be adequately modeled based on a combination of geologic, economic and technology-based variables. A base case scenario matches historical proven reserves data for these three types of natural gas. An environmental scenario, based on implementing a $50/tonne CO 2 tax results in less proven reserves being developed in the coming years while demand may decrease in the absence of acceptable substitutes, incentives or changes in consumer behavior. An increase in demand of 25% increases proven reserves being developed by a very small amount by the end of the forecast period of 2025.
This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte-interphase layer, and this cross-over can be modeled and predicted.
Graph theoretic tools were used to identify and classify clusters of ions and solvent molecules in molecular dynamics simulations of lithium-ion battery electrolytes. Electrolytes composed of various concentrations of LiPF6 dissolved in ethylene carbonate (EC), dimethylene carbonate (DMC), or a 1:1 EC/DMC mixture were simulated at multiple temperatures using classical molecular dynamics. Contrary to Nernst–Einstein theory but consistent with experiment, pure DMC systems had the greatest diffusivity but the lowest conductivity. This disagreement with Nernst–Einstein theory is explained by the observed clustering behavior, which found that systems with pure EC as a solvent formed ion clusters with nonzero charge, whereas systems with pure DMC as a solvent formed primarily neutral clusters.
In lithium ion batteries, Li+ intercalation into electrodes is induced by applied voltages, which are in turn associated with free energy changes of Li+ transfer (ΔGt) between the solid and liquid phases. Using ab initio molecular dynamics (AIMD) and thermodynamic integration techniques, we compute ΔGt for the virtual transfer of a Li+ from a LiC6 anode slab, with pristine basal planes exposed, to liquid ethylene carbonate confined in a nanogap. The onset of delithiation, at ΔGt = 0, is found to occur on LiC6 anodes with negatively charged basal surfaces. These negative surface charges are evidently needed to retain Li+ inside the electrode and should affect passivation (“SEI”) film formation processes. Fast electrolyte decomposition is observed at even larger electron surface densities. By assigning the experimentally known voltage (0.1 V vs Li+/Li metal) to the predicted delithiation onset, an absolute potential scale is obtained. This enables voltage calibrations in simulation cells used in AIMD studies and paves the way for future prediction of voltage dependences in interfacial processes in batteries.