Using chemical kinetic modeling and statistical analysis, we investigate the possibility of correlating key chemical "markers"-typically small molecules-formed during very lean (φ ∼0.001) oxidation experiments with near-stoichiometric (φ ∼1) fuel ignition properties. One goal of this work is to evaluate the feasibility of designing a fuel-screening platform, based on small laboratory reactors that operate at low temperatures and use minimal fuel volume. Buras et al. [Combust. Flame 2020, 216, 472-484] have shown that convolutional neural net (CNN) fitting can be used to correlate first-stage ignition delay times (IDTs) with OH/HO2measurements during very lean oxidation in low-T flow reactors with better than factor-of-2 accuracy. In this work, we test the limits of applying this correlation-based approach to predict the low-temperature heat release (LTHR) and total IDT, including the sensitivity of total IDT to the equivalence ratio, φ. We demonstrate that first-stage IDT can be reliably correlated with very lean oxidation measurements using compressed sensing (CS), which is simpler to implement than CNN fitting. LTHR can also be predicted via CS analysis, although the correlation quality is somewhat lower than for first-stage IDT. In contrast, the accuracy of total IDT prediction at φ = 1 is significantly lower (within a factor of 4 or worse). These results can be rationalized by the fact that the first-stage IDT and LTHR are primarily determined by low-temperature chemistry, whereas total IDT depends on low-, intermediate-, and high-temperature chemistry. Oxidation reactions are most important at low temperatures, and therefore, measurements of universal molecular markers of oxidation do not capture the full chemical complexity required to accurately predict the total IDT even at a single equivalence ratio. As a result, we find that φ-sensitivity of ignition delay cannot be predicted at all using solely correlation with lean low-T chemical speciation measurements.
The reactivity of carbonyl oxides has previously been shown to exhibit strong conformer and substituent dependencies. Through a combination of synchrotron multiplexed photoionization mass spectrometry experiments (298 K, 4 Torr) and high-level theory (CCSD(T)-F12/cc-pVTZ-F12//B2PLYP-D3/cc-pVTZ with an added CCSDT(Q) correction), we explore the conformer dependence of the reaction of acetaldehyde oxide (CH3CHOO) with dimethyl amine (DMA). The experimental data supports the theoretically predicted 1,2-insertion mechanism and the formation of an amine-functionalized hydroperoxide reaction product. Tunable-VUV photoionization probing of anti- or anti- + syn-CH3CHOO reveals a strong conformer dependence of the title reaction. Here, the rate coefficient of DMA with anti-CH3CHOO is predicted to exceed that for the reaction with syn-CH3CHOO by a factor of ~34,000, which is attributed to submerged barrier (syn) vs. barrierless (anti) mechanisms for energetically downhill reactions.
Rapid molecular-weight growth of hydrocarbons occurs in flames, in industrial synthesis, and potentially in cold astrochemical environments. A variety of high- and low-temperature chemical mechanisms have been proposed and confirmed, but more facile pathways may be needed to explain observations. We provide laboratory confirmation in a controlled pyrolysis environment of a recently proposed mechanism, radical–radical chain reactions of resonance-stabilized species. The recombination reaction of phenyl (c-C6H5) and benzyl (c-C6H5CH2) radicals produces both diphenylmethane and diphenylmethyl radicals, the concentration of the latter increasing with rising temperature. A second phenyl addition to the product radical forms both triphenylmethane and triphenylmethyl radicals, confirming the propagation of radical–radical chain reactions under the experimental conditions of high temperature (1100–1600 K) and low pressure (ca. 3 kPa). Similar chain reactions may contribute to particle growth in flames, the interstellar medium, and industrial reactors.
Ongoing progress in synthetic biology, metabolic engineering, and catalysis continues to produce a diverse array of advanced biofuels with complex molecular structure and functional groups. In order to integrate biofuels into existing combustion systems, and to optimize the design of next-generation combustion systems, understanding connections between molecular structure and ignition at low-temperature conditions (< 1000 K) remains a priority that is addressed in part using chemical kinetics modeling. The development of predictive models relies on detailed information, derived from experimental and theoretical studies, on molecular structure and chemical reactivity, both of which influence the balance of chain reactions that occur during combustion – propagation, termination, and branching. In broad context, three main categories of reactions affect ignition behavior: (i) initiation reactions that generate a distribution of organic radicals, R˙; (ii) competing unimolecular decomposition of R˙ and bimolecular reaction of R˙ with O2; (iii) decomposition mechanisms of peroxy radical adducts (ROO˙), including isomerization via ROO˙ ⇌ Q˙OOH. All three categories are influenced by functional groups in different ways, which causes a shift in the balance of chain reactions that unfold over complex temperature- and pressure-dependent mechanisms. The objective of the present review is three-fold: (1) to provide a historical account of research on low-temperature oxidation of biofuels, including initiation reactions, peroxy radical reactions, Q˙OOH-mediated reaction mechanisms, and chain-branching chemistry; (2) to summarize the influence of functional groups on chemical kinetics relevant to chain-branching reactions, which are responsible for the accelerated production of radicals that leads to ignition; (3) to identify areas of research that are needed – experimentally and computationally – to address fundamental questions that remain. Results from experimental, quantum chemical, and chemical kinetics modeling studies are reviewed for several classes of biofuels – alcohols, esters, ketones, acyclic ethers and cyclic ethers – and are compared against analogous results in alkane oxidation. The review is organized into separate sections for each biofuel class, which include studies on thermochemistry and bond dissociation energies, rate coefficients for initiation reactions via H-abstraction and related branching fractions, reaction mechanisms and product formation from reactive intermediates, ignition delay times, and chemical kinetics modeling. Each section is then summarized in order to identify areas for which additional functional group-specific work is required. The review concludes with an outline for research directions for improving the fundamental understanding of biofuel ignition chemistry and related chemical kinetics modeling.
Holland, Rayne; Khan, M.A.; Driscoll, Isabel; Chhantyal-Pun, Rabi; Derwent, Richard G.; Taatjes, Craig A.; Orr-Ewing, Andrew J.; Percival, Carl J.; Shallcross, Dudley E.
Trifluoroacetic acid (TFA), a highly soluble and stable organic acid, is photochemically produced by certain anthropogenically emitted halocarbons such as HFC-134a and HFO-1234yf. Both these halocarbons are used as refrigerants in the automobile industry, and the high global warming potential of HFC-134a has promoted regulation of its use. Industries are transitioning to the use of HFO-1234yf as a more environmentally friendly alternative. We investigated the environmental effects of this change and found a 33-fold increase in the global burden of TFA from an annual value of 65 tonnes formed from the 2015 emissions of HFC-134a to a value of 2220 tonnes formed from an equivalent emission of HFO-1234yf. The percentage increase in surface TFA concentrations resulting from the switch from HFC-134a to HFO-1234yf remains substantial with an increase of up to 250-fold across Europe. The increase in emissions greater than the current emission scenario of HFO-1234yf is likely to result in significant TFA burden as the atmosphere is not able to disperse and deposit relevant oxidation products. The Criegee intermediate initiated loss process of TFA reduces the surface level atmospheric lifetime of TFA by up to 5 days (from 7 days to 2 days) in tropical forested regions.
Oxiranes are a class of cyclic ethers formed in abundance during low-temperature combustion of hydrocarbons and biofuels, either via chain-propagating steps that occur from unimolecular decomposition of β-hydroperoxyalkyl radicals (β-̇QOOH) or from reactions of HOȮ with alkenes. Ethyloxirane is one of four alkyl-substituted cyclic ether isomers produced as an intermediate from n-butane oxidation. While rate coefficients for β-̇QOOH → ethyloxirane + ȮH are reported extensively, subsequent reaction mechanisms of the cyclic ether are not. As a result, chemical kinetics mechanisms commonly adopt simplified chemistry to describe ethyloxirane consumption by convoluting several elementary reactions into a single step, which may introduce mechanism truncation error—uncertainty derived from missing or incomplete chemistry. The present work provides fundamental insight on reaction mechanisms of ethyloxirane in support of ongoing efforts to minimize mechanism truncation error. Reaction mechanisms are inferred from the detection of products during chlorine atom-initiated oxidation experiments using multiplexed photoionization mass spectrometry conducted at 10 Torr and temperatures of 650 K and 800 K. To complement the experiments, calculations of stationary point energies were conducted using the ccCA-PS3 composite method on ̇R + O2 potential energy surfaces for the four ethyloxiranyl radical isomers, which produced barrier heights for 24 reaction pathways. In addition to products from ̇QOOH → cyclic ether + ȮH and ̇R + O2 → conjugate alkene + HOȮ, both of which were significant pathways and are prototypical to alkane oxidation, other species were identified from ring-opening of both ethyloxiranyl and ̇QOOH radicals. The latter occurs when the unpaired electron is localized on the ether group, causing the initial ̇QOOH structure to ring-open and form a resonance-stabilized ketohydroperoxide-type radical. The present work provides the first analysis of ethyloxirane oxidation chemistry, which reveals that consumption pathways are complex and may require an expansion of submechanisms to increase the fidelity of chemical kinetics mechanisms.
The oxidation of neo-pentane was studied by combining experiments, theoretical calculations, and mechanistic developments to elucidate the impact of the 3rd O2 addition reaction network on ignition delay time predictions. The experiments were based on photoionization mass spectrometry in jet-stirred and time-resolved flow reactors allowing for sensitive detection of the keto-hydroperoxide (KHP) and keto-dihydroperoxide (KDHP) intermediates. With neo-pentane exhibiting a unique symmetric molecular structure, which consequently results only in single KHP and KDHP isomers, theoretical calculations of ionization and fragment appearance energies and of absolute photoionization cross sections enabled the unambiguous identification and quantification of the KHP intermediate. Its temperature and time-resolved profiles together with calculated and experimentally observed KHP-to-KDHP signal ratios were compared to simulation results based on a newly developed mechanism that describes the 3rd O2 addition reaction network. A satisfactory agreement was observed between the experimental data points and the simulation results, adding confidence to the model’s overall performance.
Vansco, Michael F.; Caravan, Rebecca L.; Pandit, Shubhrangshu; Zuraski, Kristen; Winiberg, Frank A.F.; Au, Kendrew; Bhagde, Trisha; Trongsiriwat, Nisalak; Walsh, Patrick J.; Osborn, David L.; Percival, Carl J.; Klippenstein, Stephen J.; Taatjes, Craig A.; Lester, Marsha I.
Isoprene is the most abundant non-methane hydrocarbon emitted into the Earth's atmosphere. Ozonolysis is an important atmospheric sink for isoprene, which generates reactive carbonyl oxide species (R1R2CO+O-) known as Criegee intermediates. This study focuses on characterizing the catalyzed isomerization and adduct formation pathways for the reaction between formic acid and methyl vinyl ketone oxide (MVK-oxide), a four-carbon unsaturated Criegee intermediate generated from isoprene ozonolysis. syn-MVK-oxide undergoes intramolecular 1,4 H-atom transfer to form a substituted vinyl hydroperoxide intermediate, 2-hydroperoxybuta-1,3-diene (HPBD), which subsequently decomposes to hydroxyl and vinoxylic radical products. Here, we report direct observation of HPBD generated by formic acid catalyzed isomerization of MVK-oxide under thermal conditions (298 K, 10 torr) using multiplexed photoionization mass spectrometry. The acid catalyzed isomerization of MVK-oxide proceeds by a double hydrogen-bonded interaction followed by a concerted H-atom transfer via submerged barriers to produce HPBD and regenerate formic acid. The analogous isomerization pathway catalyzed with deuterated formic acid (D2-formic acid) enables migration of a D atom to yield partially deuterated HPBD (DPBD), which is identified by its distinct mass (m/z 87) and photoionization threshold. In addition, bimolecular reaction of MVK-oxide with D2-formic acid forms a functionalized hydroperoxide adduct, which is the dominant product channel, and is compared to a previous bimolecular reaction study with normal formic acid. Complementary high-level theoretical calculations are performed to further investigate the reaction pathways and kinetics.
Chhantyal-Pun, Rabi; Khan, M.A.; Taatjes, Craig A.; Percival, Carl J.; Orr-Ewing, Andrew J.; Shallcross, Dudley E.
In the context of tropospheric chemistry, Criegee intermediates denote carbonyl oxides with biradical/zwitterionic character (R1R2COO) that form during the ozonolysis of alkenes. First discovered almost 70 years ago, stabilised versions of Criegee intermediates formed via collisional removal of excess energy have interesting kinetic and mechanistic properties. The direct production and detection of these intermediates were not reported in the literature until 2008. However, recent advances in their generation through the ultraviolet irradiation of the corresponding diiodoalkanes in excess O2 and detection by various spectroscopic techniques (photoionisation, ultraviolet, infrared, microwave and mass spectrometry) have shown that these species can react rapidly with closed-shell molecules, in many cases at or exceeding the classical gas-kinetic limit, via multiple reaction pathways. These reactions can be complex, and laboratory measurements of products and the temperature and pressure dependence of the reaction kinetics have also revealed unusual behaviour. The potential role of these intermediates in atmospheric chemistry is significant, altering models of the oxidising capacity of the Earth's atmosphere and the rate of generation of secondary organic aerosol.
Vansco, Michael F.; Caravan, Rebecca L.; Zuraski, Kristen; Winiberg, Frank A.F.; Au, Kendrew; Trongsiriwat, Nisalak; Walsh, Patrick J.; Osborn, David L.; Percival, Carl J.; Khan, M.A.; Shallcross, Dudley E.; Taatjes, Craig A.; Lester, Marsha I.
Ozonolysis of isoprene, one of the most abundant volatile organic compounds emitted into the Earth's atmosphere, generates two four-carbon unsaturated Criegee intermediates, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). The extended conjugation between the vinyl substituent and carbonyl oxide groups of these Criegee intermediates facilitates rapid electrocyclic ring closures that form five-membered cyclic peroxides, known as dioxoles. This study reports the first experimental evidence of this novel decay pathway, which is predicted to be the dominant atmospheric sink for specific conformational forms of MVK-oxide (anti) and MACR-oxide (syn) with the vinyl substituent adjacent to the terminal O atom. The resulting dioxoles are predicted to undergo rapid unimolecular decay to oxygenated hydrocarbon radical products, including acetyl, vinoxy, formyl, and 2-methylvinoxy radicals. In the presence of O2, these radicals rapidly react to form peroxy radicals (ROO), which quickly decay via carbon-centered radical intermediates (QOOH) to stable carbonyl products that were identified in this work. The carbonyl products were detected under thermal conditions (298 K, 10 Torr He) using multiplexed photoionization mass spectrometry (MPIMS). The main products (and associated relative abundances) originating from unimolecular decay of anti-MVK-oxide and subsequent reaction with O2 are formaldehyde (88 ± 5%), ketene (9 ± 1%), and glyoxal (3 ± 1%). Those identified from the unimolecular decay of syn-MACR-oxide and subsequent reaction with O2 are acetaldehyde (37 ± 7%), vinyl alcohol (9 ± 1%), methylketene (2 ± 1%), and acrolein (52 ± 5%). In addition to the stable carbonyl products, the secondary peroxy chemistry also generates OH or HO2 radical coproducts.
Holland, Rayne; Khan, M.A.; Chhantyal-Pun, Rabi; Orr-Ewing, Andrew J.; Percival, Carl J.; Taatjes, Craig A.; Shallcross, Dudley E.
Perfluorooctanoic acid, PFOA, is one of the many concerning pollutants in our atmosphere; it is highly resistant to environmental degradation processes, which enables it to accumulate biologically. With direct routes of this chemical to the environment decreasing, as a consequence of the industrial phase out of PFOA, it has become more important to accurately model the effects of indirect production routes, such as environmental degradation of precursors; e.g., fluorotelomer alcohols (FTOHs). The study reported here investigates the chemistry, physical loss and transport of PFOA and its precursors, FTOHs, throughout the troposphere using a 3D global chemical transport model, STOCHEM-CRI. Moreover, this investigation includes an important loss process of PFOA in the atmosphere via the addition of the stabilised Criegee intermediates, hereby referred to as the "Criegee Field. " Whilst reaction with Criegee intermediates is a significant atmospheric loss process of PFOA, it does not result in its permanent removal from the atmosphere. The atmospheric fate of the resultant hydroperoxide product from the reaction of PFOA and Criegee intermediates resulted in a ≈0.04 Gg year-1 increase in the production flux of PFOA. Furthermore, the physical loss of the hydroperoxide product from the atmosphere (i.e., deposition), whilst decreasing the atmospheric concentration, is also likely to result in the reformation of PFOA in environmental aqueous phases, such as clouds, precipitation, oceans and lakes. As such, removal facilitated by the "Criegee Field" is likely to simply result in the acceleration of PFOA transfer to the surface (with an expected decrease in PFOA atmospheric lifetime of ≈10 h, on average from ca. ≈80 h without Criegee loss to 70 h with Criegee loss).
The reaction of perfluorooctanoic acid with the smallest carbonyl oxide Criegee intermediate, CH 2 OO, has been measured and is very rapid, with a rate coefficient of (4.9 ± 0.8) × 10 -10 cm 3 s -1 , similar to that for reactions of Criegee intermediates with other organic acids. Evidence is shown for the formation of hydroperoxymethyl perfluorooctanoate as a product. With such a large rate coefficient, reaction with Criegee intermediates can be a substantial contributor to atmospheric removal of perfluorocarboxylic acids. However, the atmospheric fates of the ester product largely regenerate the initial acid reactant. Wet deposition regenerates the perfluorocarboxylic acid via condensed-phase hydrolysis. Gas-phase reaction with OH is expected principally to result in formation of the acid anhydride, which also hydrolyzes to regenerate the acid, although a minor channel could lead to destruction of the perfluorinated backbone.
Methanol is a benchmark for understanding tropospheric oxidation, but is underpredicted by up to 100% in atmospheric models. Recent work has suggested this discrepancy can be reconciled by the rapid reaction of hydroxyl and methylperoxy radicals with a methanol branching fraction of 30%. However, for fractions below 15%, methanol underprediction is exacerbated. Theoretical investigations of this reaction are challenging because of intersystem crossing between singlet and triplet surfaces – ∼45% of reaction products are obtained via intersystem crossing of a pre-product complex – which demands experimental determinations of product branching. Here we report direct measurements of methanol from this reaction. A branching fraction below 15% is established, consequently highlighting a large gap in the understanding of global methanol sources. These results support the recent high-level theoretical work and substantially reduce its uncertainties.