Publications

Results 1–25 of 161
Skip to search filters

Magnetic Source Imaging Using a Pulsed Optically Pumped Magnetometer Array

IEEE Transactions on Instrumentation and Measurement

Borna, Amir B.; Carter, T.R.; Derego, Paul; James, Conrad D.; Schwindt, Peter S.

We have developed a pulsed optically pumped magnetometer (OPM) array for detecting magnetic field maps originated from an arbitrary current distribution. The presented magnetic source imaging (MSI) system features 24-OPM channels has a data rate of 500 S/s, a sensitivity of 0.8\mathrm {pT/}\sqrt {\mathrm {Hz}} , and a dynamic range of 72 dB. We have employed our pulsed-OPM MSI system for measuring the magnetic field map of a test coil structure. The coils are moved across the array in an indexed fashion to measure the magnetic field over an area larger than the array. The captured magnetic field maps show excellent agreement with the simulation results. Assuming a 2-D current distribution, we have solved the inverse problem using the measured magnetic field maps, and the reconstructed current distribution image is compared with that of the simulation.

More Details

Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing

Science

Fuller, Elliot J.; Keene, Scott T.; Melianas, Armantas; Wang, Zhongrui; Agarwal, Sapan A.; Li, Yiyang; Tuchman, Yaakov; James, Conrad D.; Marinella, Matthew J.; Yang, J.J.; Salleo, Alberto; Talin, A.A.

Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and <10-nanoampere read currents are required for learning that surpasses conventional computing efficiency. We introduce an ionic floating-gate memory array based on a polymer redox transistor connected to a conductive-bridge memory (CBM). Selective and linear programming of a redox transistor array is executed in parallel by overcoming the bridging threshold voltage of the CBMs. Synaptic weight readout with currents <10 nanoamperes is achieved by diluting the conductive polymer with an insulator to decrease the conductance. The redox transistors endure >1 billion write-read operations and support >1-megahertz write-read frequencies.

More Details

Sparse Data Acquisition on Emerging Memory Architectures

IEEE Access

Quach, Tu-Thach Q.; Agarwal, Sapan A.; James, Conrad D.; Marinella, Matthew J.; Aimone, James B.

Emerging memory devices, such as resistive crossbars, have the capacity to store large amounts of data in a single array. Acquiring the data stored in large-capacity crossbars in a sequential fashion can become a bottleneck. We present practical methods, based on sparse sampling, to quickly acquire sparse data stored on emerging memory devices that support the basic summation kernel, reducing the acquisition time from linear to sub-linear. The experimental results show that at least an order of magnitude improvement in acquisition time can be achieved when the data are sparse. In addition, we show that the energy cost associated with our approach is competitive to that of the sequential method.

More Details

Tracking Cyber Adversaries with Adaptive Indicators of Compromise

Proceedings - 2017 International Conference on Computational Science and Computational Intelligence, CSCI 2017

Doak, Justin E.; Ingram, Joey; Mulder, Samuel A.; Naegle, John H.; Cox, Jonathan A.; Aimone, James B.; Dixon, Kevin R.; James, Conrad D.; Follett, David R.

A forensics investigation after a breach often uncovers network and host indicators of compromise (IOCs) that can be deployed to sensors to allow early detection of the adversary in the future. Over time, the adversary will change tactics, techniques, and procedures (TTPs), which will also change the data generated. If the IOCs are not kept up-to-date with the adversary's new TTPs, the adversary will no longer be detected once all of the IOCs become invalid. Tracking the Known (TTK) is the problem of keeping IOCs, in this case regular expression (regexes), up-to-date with a dynamic adversary. Our framework solves the TTK problem in an automated, cyclic fashion to bracket a previously discovered adversary. This tracking is accomplished through a data-driven approach of self-adapting a given model based on its own detection capabilities.In our initial experiments, we found that the true positive rate (TPR) of the adaptive solution degrades much less significantly over time than the naïve solution, suggesting that self-updating the model allows the continued detection of positives (i.e., adversaries). The cost for this performance is in the false positive rate (FPR), which increases over time for the adaptive solution, but remains constant for the naïve solution. However, the difference in overall detection performance, as measured by the area under the curve (AUC), between the two methods is negligible. This result suggests that self-updating the model over time should be done in practice to continue to detect known, evolving adversaries.

More Details

Computing with spikes: The advantage of fine-grained timing

Neural Computation

Verzi, Stephen J.; Rothganger, Fredrick R.; Parekh, Ojas D.; Quach, Tu-Thach Q.; Miner, Nadine E.; Vineyard, Craig M.; James, Conrad D.; Aimone, James B.

Neural-inspired spike-based computing machines often claim to achieve considerable advantages in terms of energy and time efficiency by using spikes for computation and communication. However, fundamental questions about spike-based computation remain unanswered. For instance, how much advantage do spike-based approaches have over conventionalmethods, and underwhat circumstances does spike-based computing provide a comparative advantage? Simply implementing existing algorithms using spikes as the medium of computation and communication is not guaranteed to yield an advantage. Here, we demonstrate that spike-based communication and computation within algorithms can increase throughput, and they can decrease energy cost in some cases. We present several spiking algorithms, including sorting a set of numbers in ascending/descending order, as well as finding the maximum or minimum ormedian of a set of numbers.We also provide an example application: a spiking median-filtering approach for image processing providing a low-energy, parallel implementation. The algorithms and analyses presented here demonstrate that spiking algorithms can provide performance advantages and offer efficient computation of fundamental operations useful in more complex algorithms.

More Details

Sparse coding for N-gram feature extraction and training for file fragment classification

IEEE Transactions on Information Forensics and Security

Wang, Felix W.; Quach, Tu-Thach Q.; Wheeler, Jason W.; Aimone, James B.; James, Conrad D.

File fragment classification is an important step in the task of file carving in digital forensics. In file carving, files must be reconstructed based on their content as a result of their fragmented storage on disk or in memory. Existing methods for classification of file fragments typically use hand-engineered features, such as byte histograms or entropy measures. In this paper, we propose an approach using sparse coding that enables automated feature extraction. Sparse coding, or sparse dictionary learning, is an unsupervised learning algorithm, and is capable of extracting features based simply on how well those features can be used to reconstruct the original data. With respect to file fragments, we learn sparse dictionaries for n-grams, continuous sequences of bytes, of different sizes. These dictionaries may then be used to estimate n-gram frequencies for a given file fragment, but for significantly larger n-gram sizes than are typically found in existing methods which suffer from combinatorial explosion. To demonstrate the capability of our sparse coding approach, we used the resulting features to train standard classifiers, such as support vector machines over multiple file types. Experimentally, we achieved significantly better classification results with respect to existing methods, especially when the features were used in supplement to existing hand-engineered features.

More Details

Constant-depth and subcubic-size threshold circuits for matrix multiplication

Annual ACM Symposium on Parallelism in Algorithms and Architectures

Parekh, Ojas D.; James, Conrad D.; Phillips, Cynthia A.; Aimone, James B.

Boolean circuits of McCulloch-Pitts threshold gates are a classic model of neural computation studied heavily in the late 20th century as a model of general computation. Recent advances in large-scale neural computing hardware has made their practical implementation a near-term possibility. We describe a theoretical approach for multiplying two N by N matrices that integrates threshold gate logic with conventional fast matrix multiplication algorithms, that perform O(Nω) arithmetic operations for a positive constant ω < 3. Our approach converts such a fast matrix multiplication algorithm into a constant-depth threshold circuit with approximately O(Nω) gates. Prior to our work, it was not known whether the Θ(N3)-gate barrier for matrix multiplication was surmountable by constant-depth threshold circuits. Dense matrix multiplication is a core operation in convolutional neural network training. Performing this work on a neural architecture instead of off-loading it to a GPU may be an appealing option.

More Details
Results 1–25 of 161
Results 1–25 of 161