Sandia-General Atomics Partnership
Abstract not provided.
Abstract not provided.
The authors are developing a laser radar to meet the needs of NASA for a 5-lb, 150 in{sup 3} image sensor with a pixel range accuracy of 0.1-inch. NASA applications include structural dynamics measurements, navigation guidance in rendezvous and proximity operations, and space vehicle inspection. The sensor is based on the scannerless range imager architecture developed at Sandia. This architecture modulates laser floodlight illumination and a focal plane receiver to phase encode the laser time of flight (TOF) for each pixel. They believe this approach has significant advantages over architectures directly measuring TOF including high data rate, reduced detector bandwidth, and conventional FPA detection. A limitation of the phase detection technique is its periodic nature, which provides relative range information over a finite ambiguity interval. To extend the operating interval while maintaining a given range resolution, a LADAR sensor using dual modulation frequencies has been developed. This sensor also extends the relative range information to absolute range by calibrating a gating function on the receiver to the TOF. The modulation frequency values can be scaled to meet the resolution and range interval requirements of different applications. Results from the miniature NASA sensor illustrate the advantages of the dual-frequency operation and the ability to provide the range images of 640 by 480 pixels at 30 frames per second.
Conventional methods of gathering forensic evidence at crime scenes are encumbered by difficulties that limit local law enforcement efforts to apprehend offenders and bring them to justice. Working with a local law-enforcement agency, Sandia National Laboratories has developed a prototype multispectral imaging system that can speed up the investigative search task and provide additional and more accurate evidence. The system, called the Criminalistics Light-imaging Unit (CLU), has demonstrated the capabilities of locating fluorescing evidence at crime scenes under normal lighting conditions and of imaging other types of evidence, such as untreated fingerprints, by direct white-light reflectance. CLU employs state of the art technology that provides for viewing and recording of the entire search process on videotape. This report describes the work performed by Sandia to design, build, evaluate, and commercialize CLU.