We report a novel approach whereby cross-linked polybutadiene (PB) networks can be depolymerized in situ based on thermally activated alkene metathesis. A commercially available latent Ru catalyst, HeatMet, was compared to the common second-generation Hoveyda-Grubbs catalyst, HG2, in the metathetic depolymerization of PB. HeatMet was found to possess exceptional stability and negligible activity toward PB under ambient conditions, in solution and in bulk. This enabled cross-linked networks to be prepared containing homogeneously distributed Ru catalyst. The dynamic mechanical properties of networks containing HeatMet and cross-linked using alcohol-isocyanate or thiol-ene chemistry were evaluated during cross-linking and post-cross-linking under isothermal and nonisothermal heating. In both cases, above minimum catalyst loadings ranging from 0.004 to 0.024 mol %, the networks exhibited rapid degelation into a soluble oil upon heating to 100 °C. At these temperatures, extensive depolymerization of the PB segments through ring-closing metathesis of 1,4/1,2 diads by the activated HeatMet introduced network defects in significantly greater proportion than the original number of cross-links. The in situ depolymerization of cross-linked PB networks through latent catalysis, as described here, may enable facile disposal and recycling of PB encapsulants and adhesives, among other applications.
A small, consumable-free, low-power, ultra-high-speed comprehensive GC×GC system consisting of microfabricated columns, nanoelectromechanical system (NEMS) cantilever resonators for detection, and a valve-based stop-flow modulator is demonstrated. The separation of a highly polar 29-component mixture covering a boiling point range of 46 to 253 °C on a pair of microfabricated columns using a Staiger valve manifold in less than 7 seconds, and just over 4 seconds after the ensemble holdup time is demonstrated with a downstream FID. The analysis time of the second dimension was 160 ms, and peak widths in the second dimension range from 10-60 ms. A peak capacity of just over 300 was calculated for a separation of just over 6 s. Data from a continuous operation testing over 40 days and 20000 runs of the GC×GC columns with the NEMS resonators using a 4-component test set is presented. The GC×GC-NEMS resonator system generated second-dimension peak widths as narrow as 8 ms with no discernable peak distortion due to under-sampling from the detector.
Gas Chromatography (GC) is routinely used in the laboratory to temporally separate chemical mixtures into their constituent components for improved chemical identification. This paper will provide a overview of more than twenty years of development of one-dimensional field-portable micro GC systems, highlighting key experimental results that illustrate how a reduction in false alarm rate (FAR) is achieved in real-world environments. Significantly, we will also present recent results on a micro two-dimensional GC (micro GCxGC) technology. This ultra-small system consists of microfabricated columns, NanoElectroMechanical System (NEMS) cantilever resonators for detection, and a valve-based stop-flow modulator. The separation of a 29-component polar mixture in less than 7 seconds is demonstrated along with peak widths in the second dimension ranging from 10-60 ms. For this system, a peak capacity of just over 300 was calculated for separation in about 6 s. This work has important implications for field detection, to drastically reduce FAR and significantly improve chemical selectivity and identification. This separation performance was demonstrated with the NEMS resonator and bench scale FID. But other detectors, suitably fast and sensitive can work as well. Recent research has shown that the identification power of GCxGC-FID can match that of GC-MS. This result indicates a path to improved size, weight, power, and performance in micro GCxGC systems outfitted with relatively non-specific, lightweight detectors. We will briefly discuss the performance of possible options, such as the pulsed discharge helium ionization detector (PDHID) and miniature correlation ion mobility spectrometer (mini-CIMS).
Pyrolyzed carbon as a mechanical material is promising for applications in harsh environments. In this work, we characterized the material and developed novel processes for fabricating carbon composite micro-electromechanical systems (CMEMS) structures. A novel method of increasing Young's modulus and the conductivity of pyrolyzed AZ 4330 was demonstrated by loading the films with graphene oxide prior to pyrolysis. By incorporating 2 wt.% graphene stiffeners into the film, a 65% increase in Young's modulus and 11% increase in conductivity were achieved. By reactive ion etching pyrolyzed blanket AZ 50XT thick film photoresist, a high aspect ratio process was demonstrated with films >7.5um thick. Two novel multi-level, volume-scalable CMEMS processes were developed on 6" diameter wafers. Young's modulus of 23 GPa was extracted from nanoindentation measurements of pyrolyzed AZ 50XT films. The temperature-dependent resistance was characterized from room temperature to 500C and found to be nearly linear over this range. By fitting the results of self-heated bridges in an inert ambient, we calculated that the bridges survived to 1000C without failure. Transmission electron microscopy (TEM) results showed the film to be largely amorphous, containing some sub-micrometer sized graphite crystallites. This was consistent with our Raman analysis, which also showed the film to be largely sp 2 bonded. The calculated average density of pyrolyzed AZ 4330 films was 1.32 g/cm 2 . Thin level of disorder and the conductivity of thin film resistors were found to unchanged by 2Mrad gamma irradiation from a Co 60 source. Thin film pyrolyzed carbon resistors were hermetically sealed in a nitrogen ambient in 24-pin dual in-line packages (DIP's). The resistance was measured periodically and remained constant over 6 months' time.
The advancement of materials technology towards the development of novel 3D nanostructures for energy applications has been a long-standing challenge. The purpose of this project was to explore photolithographically defineable pyrolyzed photoresist carbon films for possible energy applications. The key attributes that we explored were as follows: (1) Photo-interferometric fabrication methods to produce highly porous (meso, micro, and nano) 3-D electrode structures, and (2) conducting polymer and nanoparticle-modification strategies on these structures to provide enhanced catalytic capabilities and increase conductivity. The resulting electrodes were then explored for specific applications towards possible use in battery and energy platforms.