Publications

7 Results
Skip to search filters

The Strange Case of Ground-Coupled Airwaves on Seismoacoustic Stations at Local to Near-Regional Scales

Berg, Elizabeth M.; Dannemann Dugick, Fransiska K.; Albert, Sarah A.; Koch, Clinton K.

Here we investigate the application of ground-coupled airwaves observed by seismoacoustic stations at local to near-regional scales to detect signals of interest and determine back-azimuth information. Ground-coupled airwaves are created from incident pressure waves traveling through the atmosphere that couple to the earth and transmit as a seismic wave with retrograde elliptical motion. Previous studies at sub-local scales (<10 km from a source of interest) found the back-azimuth to the source could be accurately determined from seismoacoustic signals recorded by acoustic and 3-component seismic sensors spatially separated on the order of 10 to 150 m. The potential back-azimuth directions are estimated from the coherent signals between the acoustic and vertical seismic data, via a propagation-induced phase shift of the seismoacoustic signal. A unique solution is then informed by the particle motion of the 3-component seismic station, which was previously found to be less accurate than the seismoacoustic-sensor method. We investigate the applicability of this technique to greater source-receiver distances, from 50-100 km and up to 400 km, which contains pressure waves with tropospheric and stratospheric ray paths, respectively. Specifically, we analyze seismoacoustic sources with ground truth from rocket motor fuel elimination events at the Utah Test and Training Range (UTTR) as well as a 2020 rocket launch in Southern California. From these sources we observe evidence that while coherent signals can be seen from both sources on multiple seismoacoustic station pairs, the determined ground-coupled airwave back-azimuths are more complicated than results at more local scales. Our findings suggest more complex factors including incidence angle, coupling location, subsurface material, and atmospheric propagation effects need to be fully investigated before the ground-coupled airwave back-azimuth determination method can be applied or assessed at these further distances.

More Details

Locating surface explosions by combining seismic and infrasound data

Seismological Research Letters

Koch, Clinton K.; Arrowsmith, Stephen J.

An outline of a Bayesian source location framework for using seismic and acoustic observations is developed and tested on synthetic and real data. Seismic and acoustic phenomena are both commonly used in detection and location of a variety of natural or man-made events, such as volcanic eruptions, quarry blasts, and military exercises. Typically, seismic and acoustic observations have been utilized independently of each other. Here, we outline a Bayesian formulation for combining the two observations in a single estimate of the location and origin time. Using realistic estimates of uncertainty, we subsequently explore how combining the different observation types can benefit event location at local to near-regional distances. We apply the method to synthetic data and to real observations from a mining blast in Bingham Mine in Utah. Our findings suggest that, for relatively sparse or azimuthally limited observations, the relative strengths of the two different phenomenologies enable more precise joint-event localization than either seismic or infrasonic measurements alone.

More Details
7 Results
7 Results