Publications

16 Results
Skip to search filters

Direct Subsurface Measurements through Precise Micro Drilling

Su, Jiann-Cherng S.; Bettin, Giorgia B.; Buerger, Stephen B.; Rittikaidachar, Michal; Hobart, Clinton G.; Slightam, Jonathon S.; McBrayer, Kepra M.; Gonzalez, Levi M.; Pope, Joseph S.; Foris, Adam J.; Bruss, Kathryn B.; Kim, Raymond K.; Mazumdar, Anirban

Wellbore integrity is a significant problem in the U.S. and worldwide, which has serious adverse environmental and energy security consequences. Wells are constructed with a cement barrier designed to last about 50 years. Indirect measurements and models are commonly used to identify wellbore damage and leakage, often producing subjective and even erroneous results. The research presented herein focuses on new technologies to improve monitoring and detection of wellbore failures (leaks) by developing a multi-step machine learning approach to localize two types of thermal defects within a wellbore model, a prototype mechatronic system for automatically drilling small diameter holes of arbitrary depth to monitor the integrity of oil and gas wells in situ, and benchtop testing and analyses to support the development of an autonomous real-time diagnostic tool to enable sensor emplacement for monitoring wellbore integrity. Each technology was supported by experimental results. This research has provided tools to aid in the detection of wellbore leaks and significantly enhanced our understanding of the interaction between small-hole drilling and wellbore materials.

More Details

Achieving Versatile Energy Efficiency with the WANDERER Biped Robot

IEEE Transactions on Robotics

Hobart, Clinton G.; Mazumdar, Anirban; Spencer, Steven; Quigley, Morgan; Smith, Jesper P.; Bertrand, Sylvain; Pratt, Jerry; Kuehl, Michael K.; Buerger, Stephen B.

Legged humanoid robots promise revolutionary mobility and effectiveness in environments built for humans. However, inefficient use of energy significantly limits their practical adoption. The humanoid biped walking anthropomorphic novelly-driven efficient robot for emergency response (WANDERER) achieves versatile, efficient mobility, and high endurance via novel drive-trains and passive joint mechanisms. Results of a test in which WANDERER walked for more than 4 h and covered 2.8 km on a treadmill, are presented. Results of laboratory experiments showing even more efficient walking are also presented and analyzed in this article. WANDERER's energetic performance and endurance are believed to exceed the prior literature in human-scale humanoid robots. This article describes WANDERER, the analytical methods and innovations that enable its design, and system-level energy efficiency results.

More Details

Automated drilling of high aspect ratio, small diameter holes in remote, confined spaces

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Rittikaidachar, Michal; Hobart, Clinton G.; Slightam, Jonathon S.; Su, Jiann-Cherng S.; Buerger, Stephen B.

We describe the development and benchtop prototype performance characterization of a mechatronic system for automatically drilling small diameter holes of arbitrary depth, to enable monitoring the integrity of oil and gas wells in situ. The precise drilling of very small diameter, high aspect ratio holes, particularly in dimensionally constrained spaces, presents several challenges including bit buckling, limited torsional stiffness, chip clearing, and limited space for the bit and mechanism. We describe a compact mechanism that overcomes these issues by minimizing the unsupported drill bit length throughout the process, enabling the bit to be progressively fed from a chuck as depth increases. When used with flexible drill bits, holes of arbitrary depth and aspect ratio may be drilled orthogonal to the wellbore. The mechanism and a conventional drilling system are tested in deep hole drilling operation. The experimental results show that the system operates as intended and achieves holes with substantially greater aspect ratios than conventional methods with very long drill bits. The mechanism enabled successful drilling of a 1/16" diameter hole to a depth of 9", a ratio of 144:1. Dysfunctions prevented drilling of the same hole using conventional methods.

More Details

Synthetic Fiber Capstan Drives for Highly Efficient, Torque Controlled, Robotic Applications

IEEE Robotics and Automation Letters

Mazumdar, Anirban; Spencer, Steven; Hobart, Clinton G.; Dabling, Jeffrey D.; Blada, Timothy; Dullea, Kevin; Kuehl, Michael K.; Buerger, Stephen B.

This paper describes the design and performance of a synthetic rope on sheave drive system. This system uses synthetic ropes instead of steel cables to achieve low weight and a compact form factor. We demonstrate how this system is capable of 28-Hz torque control bandwidth, 95% efficiency, and quiet operation, making it ideal for use on legged robots and other dynamic physically interactive systems. Component geometry and tailored maintenance procedures are used to achieve high endurance. Endurance tests based on walking data predict that the ropes will survive roughly 247,000 cycles when used on large (90 kg), fully actuated bipedal robot systems. The drive systems have been incorporated into two novel bipedal robots capable of three-dimensional unsupported walking. Robot data illustrate effective torque tracking and nearly silent operation. Finally, comparisons with alternative transmission designs illustrate the size, weight, and endurance advantages of using this type of synthetic rope drive system.

More Details

Parallel Elastic Elements Improve Energy Efficiency on the STEPPR Bipedal Walking Robot

IEEE/ASME Transactions on Mechatronics

Mazumdar, Anirban; Spencer, Steven; Hobart, Clinton G.; Salton, Jonathan R.; Quigley, Morgan; Wu, Tingfan; Bertrand, Sylvain; Pratt, Jerry; Buerger, Stephen B.

This paper describes how parallel elastic elements can be used to reduce energy consumption in the electric-motor-driven, fully actuated, Sandia Transmission-Efficient Prototype Promoting Research (STEPPR) bipedal walking robot without compromising or significantly limiting locomotive behaviors. A physically motivated approach is used to illustrate how selectively engaging springs for hip adduction and ankle flexion predict benefits for three different flat-ground walking gaits: human walking, human-like robot walking, and crouched robot walking. Based on locomotion data, springs are designed and substantial reductions in power consumption are demonstrated using a bench dynamometer. These lessons are then applied to STEPPR, a fully actuated bipedal robot designed to explore the impact of tailored joint mechanisms on walking efficiency. Featuring high-Torque brushless DC motors, efficient low-ratio transmissions, and high-fidelity torque control, STEPPR provides the ability to incorporate novel joint-level mechanisms without dramatically altering high-level control. Unique parallel elastic designs are incorporated into STEPPR, and walking data show that hip adduction and ankle flexion springs significantly reduce the required actuator energy at those joints for several gaits. These results suggest that parallel joint springs offer a promising means of supporting quasi-static joint torques due to body mass during walking, relieving motors of the need to support these torques and substantially improving locomotive energy efficiency.

More Details

Improving robotic actuator torque density and efficiency through enhanced heat transfer

ASME 2016 Dynamic Systems and Control Conference, DSCC 2016

Mazumdar, Anirban; Spencer, Steven; Hobart, Clinton G.; Kuehl, Michael K.; Brunson, Gregory; Coleman, Nadia; Buerger, Stephen B.

Electric motors are a popular choice for mobile robots because they can provide high peak efficiencies, high speeds, and quiet operation. However, the continuous torque performance of these actuators is thermally limited due to joule heating, which can ultimately cause insulation breakdown. In this work we illustrate how motor housing design and active cooling can be used to significantly improve the ability of the motor to transfer heat to the environment. This can increase continuous torque density and reduce energy consumption. We present a novel housing design for brushless DC motors that provides improved heat transfer. This design achieves a 50% increase in heat transfer over a nominal design. Additionally, forced air or water cooling can be easily added to this configuration. Forced convection increases heat transfer over the nominal design by 79%with forced air and 107% with pumped water. Finally, we show how increased heat transfer reduces power consumption and we demonstrate that strategically spending energy on cooling can provide net energy savings of 4%-6%.

More Details

Using parallel stiffness to achieve improved locomotive efficiency with the Sandia STEPPR robot

Proceedings - IEEE International Conference on Robotics and Automation

Mazumdar, Anirban; Spencer, Steven; Salton, Jonathan R.; Hobart, Clinton G.; Love, Joshua A.; Dullea, Kevin; Kuehl, Michael K.; Blada, Timothy; Quigley, Morgan; Smith, Jesper; Bertrand, Sylvain; Wu, Tingfan; Pratt, Jerry; Buerger, Stephen B.

In this paper we introduce STEPPR (Sandia Transmission-Efficient Prototype Promoting Research), a bipedal robot designed to explore efficient bipedal walking. The initial iteration of this robot achieves efficient motions through powerful electromagnetic actuators and highly back-drivable synthetic rope transmissions. We show how the addition of parallel elastic elements at select joints is predicted to provide substantial energetic benefits: reducing cost of transport by 30 to 50 percent. Two joints in particular, hip roll and ankle pitch, reduce dissipated power over three very different gait types: human walking, human-like robot walking, and crouched robot walking. Joint springs based on this analysis are tested and validated experimentally. Finally, this paper concludes with the design of two unique parallel spring mechanisms to be added to the current STEPPR robot in order to provide improved locomotive efficiency.

More Details

RoboHound:developing sample collection and preconcentration hardware for a remote trace explosives detection system

Baumann, Mark J.; Carlson, Dennis L.; Lenz, Michael C.; Hannum, David W.; Mitchell, Mary-Anne M.; Gladwell, Thomas S.; Hobart, Clinton G.; Anderson, Robert J.; Denning, David J.

The RoboHound{trademark} Project was a three-year, multiphase project at Sandia National Laboratories to build and refine a working prototype trace explosive detection system as a tool for a commercial robot. The RoboHound system was envisioned to be a tool for emergency responders to test suspicious items (i.e., packages or vehicles) for explosives while maintaining a safe distance. The project investigated combining Sandia's expertise in trace explosives detection with a wheeled robotic platform that could be programmed to interrogate suspicious items remotely for the presence of explosives. All of the RoboHound field tests were successful, especially with regards to the ability to collect and detect trace samples of RDX. The project has gone from remote sampling with human intervention to a fully automatic system that requires no human intervention until the robot returns from a sortie. A proposal is being made for additional work leading towards commercialization.

More Details
16 Results
16 Results