Publications

Results 1–25 of 28
Skip to search filters

High-resolution imaging of warm x-ray sources with a Wolter optic on the Z Machine

Fein, Jeffrey R.; Ampleford, David A.; Vogel, J.K.V.; Kozioziemski, B.J.; Walton, C.C.W.; Wu, Ming W.; Ayers, J.A.; Ball, Christopher R.; Romaine, S.R.; Bell, Perry M.; Bourdon, Christopher B.; Bradley, Dalton A.; Bruni, R B.; Gard, Paul D.; Highstrete, Clark H.; Kilaru, K.K.; Lake, Patrick W.; Maurer, A.; Pickworth, L.A.P.; Pivovaroff, M.J.; Ramsey, B.R.; Ritter, Brian J.; Seals, Kathryn L.; Sethares, L S.

Abstract not provided.

High-resolution imaging of warm x-ray sources with a Wolter optic on the Z Machine

Fein, Jeffrey R.; Ampleford, David A.; Vogel, J.K.V.; Kozioziemski, B.J.; Walton, C.C.W.; Wu, Ming W.; Ayers, J.A.; Ball, Christopher R.; Romaine, S.R.; Bell, Perry M.; Bourdon, Christopher B.; Bradley, Dave B.; Bruni, R B.; Gard, Paul D.; Highstrete, Clark H.; Kilaru, K.K.; Lake, Patrick W.; Maurer, A.; Pickworth, L.A.P.; Pivovaroff, M.J.; Ramsey, B.R.

Abstract not provided.

Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps

Highstrete, Clark H.; Sterk, Jonathan D.; Heller, Edwin J.; Maunz, Peter L.; Nordquist, Christopher N.; Stevens, James E.; Tigges, Chris P.; Blain, Matthew G.

Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb+ hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ion traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.

More Details

Microfabricated surface ion traps for quantum computation

Highstrete, Clark H.; Stick, Daniel L.; Tigges, Chris P.; Blain, Matthew G.; Fortier, Kevin M.; Haltli, Raymond A.; Kemme, S.A.; Lindgren, Thomas L.; Moehring, David L.

We will present results of the design, operation, and performance of surface ion micro-traps fabricated at Sandia. Recent progress in the testing of the micro-traps will be highlighted, including successful motional control of ions and the validation of simulations with experiments.

More Details

RF/microwave properties of nanotubes and nanowires : LDRD Project 105876 final report

Lee, Mark L.; Highstrete, Clark H.; Hsu, Julia W.; Scrymgeour, David S.

LDRD Project 105876 was a research project whose primary goal was to discover the currently unknown science underlying the basic linear and nonlinear electrodynamic response of nanotubes and nanowires in a manner that will support future efforts aimed at converting forefront nanoscience into innovative new high-frequency nanodevices. The project involved experimental and theoretical efforts to discover and understand high frequency (MHz through tens of GHz) electrodynamic response properties of nanomaterials, emphasizing nanowires of silicon, zinc oxide, and carbon nanotubes. While there is much research on DC electrical properties of nanowires, electrodynamic characteristics still represent a major new frontier in nanotechnology. We generated world-leading insight into how the low dimensionality of these nanomaterials yields sometimes desirable and sometimes problematic high-frequency properties that are outside standard model electron dynamics. In the cases of silicon nanowires and carbon nanotubes, evidence of strong disorder or glass-like charge dynamics was measured, indicating that these materials still suffer from serious inhomogeneities that limit there high frequency performance. Zinc oxide nanowires were found to obey conventional Drude dynamics. In all cases, a significant practical problem involving large impedance mismatch between the high intrinsic impedance of all nanowires and nanotubes and high-frequency test equipment had to be overcome.

More Details

RF/Microwave properties and applications of directly assembled nanotubes and nanowires: LDRD project 102662 final report

Lee, Mark L.; Shaner, Eric A.; Highstrete, Clark H.; Talin, A.A.; Jones, Frank E.

LDRD Project 102662 provided support to pursue experiments aimed at measuring the basic electrodynamic response and possible applications of carbon nanotubes and silicon nanowires at radiofrequency to microwave frequencies, approximately 0.01 to 50 GHz. Under this project, a method was developed to integrate these nanomaterials onto high-frequency compatible co-planar waveguides. The complex reflection and transmission coefficients of the nanomaterials was studied as a function of frequency. From these data, the high-frequency loss characteristics of the nanomaterials were deduced. These data are useful to predict frequency dependence and power dissipation characteristics in new rf/microwave devices incorporating new nanomaterials.

More Details

Microwave to millimeter-wave electrodynamic response and applications of semiconductor nanostructures: LDRD project 67025 final report

Shaner, Eric A.; Highstrete, Clark H.; Reno, J.L.; Wanke, Michael W.

Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

More Details
Results 1–25 of 28
Results 1–25 of 28