Publications

30 Results
Skip to search filters

Laser based micro forming and assembly

Palmer, Jeremy A.; Knorovsky, Gerald A.; Maccallum, Danny O.; Scherzinger, William M.; Wong, Chungnin C.

It has been shown that thermal energy imparted to a metallic substrate by laser heating induces a transient temperature gradient through the thickness of the sample. In favorable conditions of laser fluence and absorptivity, the resulting inhomogeneous thermal strain leads to a measurable permanent deflection. This project established parameters for laser micro forming of thin materials that are relevant to MESA generation weapon system components and confirmed methods for producing micrometer displacements with repeatable bend direction and magnitude. Precise micro forming vectors were realized through computational finite element analysis (FEA) of laser-induced transient heating that indicated the optimal combination of laser heat input relative to the material being heated and its thermal mass. Precise laser micro forming was demonstrated in two practical manufacturing operations of importance to the DOE complex: micrometer gap adjustments of precious metal alloy contacts and forming of meso scale cones.

More Details

Advancement in thermal interface materials for future high-performance electronic applications. Part 1

Emerson, John A.; Rightley, Michael J.; Wong, Chungnin C.; Huber, Dale L.; Jakaboski, Blake E.

As electronic assemblies become more compact and increase in processing bandwidth, escalating thermal energy has become more difficult to manage. The major limitation has been nonmetallic joining using poor thermal interface materials (TIM). The interfacial, versus bulk, thermal conductivity of an adhesive is the major loss mechanism and normally accounts for an order magnitude loss in conductivity per equivalent thickness. The next generation TIM requires a sophisticated understanding of material and surface sciences, heat transport at submicron scales, and the manufacturing processes used in packaging of microelectronics and other target applications. Only when this relationship between bond line manufacturing processes, structure, and contact resistance is well-understood on a fundamental level will it be possible to advance the development of miniaturized microsystems. This report examines using thermal and squeeze-flow modeling as approaches to formulate TIMs incorporating nanoscience concepts. Understanding the thermal behavior of bond lines allows focus on the interfacial contact region. In addition, careful study of the thermal transport across these interfaces provides greatly augmented heat transfer paths and allows the formulation of very high resistance interfaces for total thermal isolation of circuits. For example, this will allow the integration of systems that exhibit multiple operational temperatures, such as cryogenically cooled detectors.

More Details

Experimental and computational study on laser heating of surface micromachined cantilevers

Phinney, Leslie M.; Spahn, Olga B.; Wong, Chungnin C.

Microsystems are potentially exposed to laser irradiation during processing, diagnostic measurements, and, in some cases, device operation. The behavior of the components in an optical MEMS device that are irradiated by a laser needs to be optimized for reliable operation. Utilizing numerical simulations facilitates design and optimization. This paper reports on experimental and numerical investigations of the thermomechanical response of polycrystalline silicon microcantilevers that are 250 {micro}m wide, 500 {micro}m long, and 2.25 {micro}m thick when heated by an 808 nm laser. At laser powers above 400 mW significant deflection is observed during the laser pulse using a white light interferometer. Permanent deformation is detected at laser powers above 650 mW in the experiments. Numerical calculations using a coupled physics finite element code, Calagio, agree qualitatively with the experimental results. Both the experimental and numerical results reveal that the initial stress state is very significant. Microcantilevers deflect in the direction of their initial deformation upon irradiation with a laser.

More Details

Analyzing mechanical responses of microstructures from optical heating

American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS

Wong, Chungnin C.; Spahn, Olga B.; Phinney, Leslie M.

Optical microswitches are being developed for use in communication and security systems because of their small size and fast response time. However, as the intensity of the light incident on the microswitches increases, the thermal and mechanical responses of the reflective surfaces are becoming a concern. It is important to dissipate heat adequately and to minimize any deformation on the reflective surfaces. To understand the mechanical responses of these microswitches, a set of microstructures have been fabricated and tested to evaluate how the surfaces deform when irradiated with a high-intensity laser beam. To evaluate and further investigate the experimental findings, the coupled physical analysis tool, Calagio, has been applied to simulate the mechanical behavior of these test structures when they are optically heated. Code prediction of the surface displacement will be compared against measurement. Our main objective is to assess the existing material models and our code predictive capability so that it will be used to qualify the performance of microswitches being developed.

More Details

Modeling microscale heat transfer using Calore

Torczynski, J.R.; Wong, Chungnin C.; Piekos, Edward S.; Gallis, Michail A.; Rader, Daniel J.; Bainbridge, Bruce L.

Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

More Details

Multiscale thermal transport

Piekos, Edward S.; Piekos, Edward S.; Wong, Chungnin C.

A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

More Details

Coupled electro-thermal mechanical analyses for SMM actuators development

American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS

Wong, Chungnin C.; Lober, Randy R.; Hales, Jason H.

A coupled-physics analysis code has been developed to simulate the electrical, thermal, and mechanical responses of surface micromachined (SMM) actuators. Our objective is to optimize the design and performance of these micro actuators. Since many new designs of these electro-thermal actuators have shuttles or platforms between beams, calculating the local Joule heating requires a multi-dimensional electrostatics analysis. Moreover, the electrical solution is strongly coupled to the temperature distribution since the electrical resistivity is temperature dependent. Thus, it is essential to perform a more comprehensive simulation that solves the coupled electrostatics, thermal, and mechanical equations. Results of the coupled-physics analyses will be presented. Copyright © 2004 by ASME.

More Details

Computational analysis of fluid-wall interactions in micro- and nano-domains

Wong, Chungnin C.; Wong, Chungnin C.; Noble, David R.

In many micro-scale fluid dynamics problems, molecular-level processes can control the interfacial energy and viscoelastic properties at a liquid-solid interface. This leads to a flow behavior that is very different from those similar fluid dynamics problems at the macro-scale. Presently, continuum modeling fails to capture this flow behavior. Molecular dynamics simulations have been applied to investigate these complex fluid-wall interactions at the nano-scale. Results show that the influence of the wall crystal lattice orientation on the fluid-wall interactions can be very important. To address those problems involving interactions of multiple length scales, a coupled atomistic-continuum model has been developed and applied to analyze flow in channels with atomically smooth walls. The present coupling strategy uses the molecular dynamics technique to probe the non-equilibrium flow near the channel walls and applies constraints to the fluid particle motion, which is coupled to the continuum flow modeling in the interior region. We have applied this new methodology to investigate Couette flow in micro-channels.

More Details

Characterizing gaseous flow in submicron chromatography columns

American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED

Wong, Chungnin C.

Enormous interest exists to develop the next generation of an integrated microsystem for chemical and biological analysis (μChemLab™) and to further reduce the volume of the system. One approach is to scale down the size of critical components and to explore any pumping mechanism that can minimize the power requirement. Since the majority of the pumping requirement is to overcome the wall resistance in the gas chromatography (GC) column, our attention is to study the gas flow in this GC column. As the column dimension decreases, the gaseous flow will go from a continuum regime into a non-continuum regime; i.e., slip, transition, and free molecular regimes. Thus it is very important to well characterize the gaseous flow in submicron columns and to understand its flow behavior. Specifically, in this study, our focus is to investigate the effects of viscosity, rarefaction, and compressibility as the column dimension decreases. Both theoretical predictions and experimental results will be presented.

More Details

Microscale Modeling and Simulation

Redmond, James M.; Reedy, Earl D.; Heinstein, Martin W.; De Boer, Maarten P.; Knapp, J.A.; Piekos, Edward S.; Wong, Chungnin C.; Holm, Elizabeth A.

The Microsystems Subgrid Physics project is intended to address gaps between developing high-performance modeling and simulation capabilities and microdomain specific physics. The initial effort has focused on incorporating electrostatic excitations, adhesive surface interactions, and scale dependent material and thermal properties into existing modeling capabilities. Developments related to each of these efforts are summarized, and sample applications are presented. While detailed models of the relevant physics are still being developed, a general modeling framework is emerging that can be extended to incorporate evolving material and surface interaction modules.

More Details

Design and Analysis of a Preconcentrator for the ChemLab

Wong, Chungnin C.; Flemming, Jeb H.; Manginell, Ronald P.; Kottenstette, Richard K.; Frye-Mason, Gregory C.

Preconcentration is a critical analytical procedure when designing a microsystem for trace chemical detection, because it can purify a sample mixture and boost the small analyte concentration to a much higher level allowing a better analysis. This paper describes the development of a micro-fabricated planar preconcentrator for the {mu}ChemLab{trademark} at Sandia. To guide the design, an analytical model to predict the analyte transport, adsorption and resorption process in the preconcentrator has been developed. Experiments have also been conducted to analyze the adsorption and resorption process and to validate the model. This combined effort of modeling, simulation, and testing has led us to build a reliable, efficient preconcentrator with good performance.

More Details

Materials Issues for Micromachines Development - ASCI Program Plan

Fang, H.E.; Miller, Samuel L.; Dugger, Michael T.; Prasad, Somuri V.; Reedy, Earl D.; Thompson, Aidan P.; Wong, Chungnin C.; Yang, Pin Y.; Battaile, Corbett C.; Battaile, Corbett C.; Benavides, Gilbert L.; Ensz, M.T.; Buchheit, Thomas E.; Chen, Er-Ping C.; Christenson, Todd R.; De Boer, Maarten P.

This report summarizes materials issues associated with advanced micromachines development at Sandia. The intent of this report is to provide a perspective on the scope of the issues and suggest future technical directions, with a focus on computational materials science. Materials issues in surface micromachining (SMM), Lithographic-Galvanoformung-Abformung (LIGA: lithography, electrodeposition, and molding), and meso-machining technologies were identified. Each individual issue was assessed in four categories: degree of basic understanding; amount of existing experimental data capability of existing models; and, based on the perspective of component developers, the importance of the issue to be resolved. Three broad requirements for micromachines emerged from this process. They are: (1) tribological behavior, including stiction, friction, wear, and the use of surface treatments to control these, (2) mechanical behavior at microscale, including elasticity, plasticity, and the effect of microstructural features on mechanical strength, and (3) degradation of tribological and mechanical properties in normal (including aging), abnormal and hostile environments. Resolving all the identified critical issues requires a significant cooperative and complementary effort between computational and experimental programs. The breadth of this work is greater than any single program is likely to support. This report should serve as a guide to plan micromachines development at Sandia.

More Details

Microfabricated planar preconcentrator

Manginell, Ronald P.; Frye-Mason, Gregory C.; Kottenstette, Richard K.; Lewis, Patrick R.; Wong, Chungnin C.

Front-end sampling or preconcentration is an important analytical technique and will be crucial to the success of many microanalytical detector systems. This paper describes a microfabricated planar preconcentrator ideal for integration with microanalytical systems. The device incorporates a surfactant templated sol gel adsorbent layer deposited on a microhotplate to achieve efficient analyte collection, and rapid, efficient thermal desorption. Concentration factors of 100--500 for dimethyl methyl phosphonate (DMMP) have been achieved with this device, while selectivities to interfering compounds greater than a factor of 25 have been demonstrated. Device performance will be compared with conventional preconcentrators, and the effects of system flow rate, flow channel geometry and collection time will be presented. A physical model of adsorption/desorption from the device will be reviewed and compared with experiment, while numerical simulation of flow over the device will be described.

More Details
30 Results
30 Results