Publications

2 Results
Skip to search filters

Assessment of surface contamination with contact mechanics

Emerson, John A.; Miller, Gregory V.; Sorensen, Christopher R.

The authors are particularly interested in the work of adhesion measurements as a means to facilitate the understanding of the adhesive failure mechanisms for systems containing encapsulated and bonded components. Of the several issues under investigation, one is the effect of organic contamination on the adhesive strength for several types of polymer/metal interface combinations. The specific question that the authors are trying to address is at what level of contamination does adhesive strength decrease. The use of contact mechanics, the JKR method, is a good approach for studying this question. Another approach being studied is the use of interracial fracture mechanics. The model contaminant is hexadecane--non-polar, medium molecular weight hydrocarbon fluid. They choose hexadecane because it replicates typical machining fluids, is nonreactive with Al surfaces, and should not dissolve readily into the adhesive systems of interest. The application of a uniform, controllable and reproducible hexadecane layer on Al surfaces has proven to be difficult. A primary concern is whether studies of model systems can be extended to systems of technological interest. The JKR theory is a continuum mechanics model of contact between two solid spheres that was developed by Johnson, Kendall and Roberts. The JKR theory is an extension of Hertzian contact theory and attributes the additional increase in the contact area between a soft elastomeric hemisphere to adhesive forces between the two surfaces. The JKR theory allows a direct estimate of the surface free energy of interface as well as the work of adhesion (Wa) between solids. Early studies performed in this laboratory involved the determination of Wa between silicone (PDMS) and Al surfaces in order to establish the potential adhesive failure mechanisms. However, the JKR studies using commercial based PDMS [poly(dimethylsiloxane)] was fraught with difficulty that were attributed to the additives used in commercial PDMS systems. The authors could not discriminate hydrogen-bonding effects between Al{sub 2}O{sub 3} and hydroxyl groups in the PDMS, and other possible bonding mechanisms. A model PDMS elastomer and polymer treatments were developed for studying solid surfaces by measuring the degree of self-adhesion hysteresis as indicator of surface properties. The goal of this work is to measure the adhesion between PDMS/Al surfaces -- contaminated and two cleaning techniques. A custom-made JKR apparatus is used to determine the amount of hysteresis and Wa.

More Details

The effect of surface contamination on adhesive forces as measured by contact mechanics

Materials Research Society Symposium - Proceedings

Emerson, John A.; Giunta, Rachel K.; Miller, Gregory V.; Sorensen, Christopher R.; Pearson, Raymond A.

The contact adhesive forces between two surfaces, one being a soft hemisphere and the other being a hard plate, can readily be determined by applying an external compressive load to mate the two surfaces and subsequently applying a tensile load to peel the surfaces apart. The contact region is assumed the superposition of elastic Hertzian pressure and of the attractive surface forces that act only over the contact area. What are the effects of the degree of surface contamination on adhesive forces? Clean aluminum surfaces were coated with hexadecane as a controlled contaminant. The force required to pull an elastomeric hemisphere from a surface was determined by contact mechanics, via the JKR model, using a model siloxane network for the elastomeric contact sphere. Due to the dispersive nature of the elastomer surface, larger forces were required to pull the sphere from a contaminated surface than a clean aluminum oxide surface.

More Details
2 Results
2 Results