Publications

139 Results
Skip to search filters

Quantifying the effect of CO2 gasification on pulverized coal char oxy-fuel combustion

Proceedings of the Combustion Institute

Shaddix, Christopher R.; Hecht, Ethan S.; Haynes, Brian S.

Previous research has provided strong evidence that CO2 and H2O gasification reactions can provide non-negligible contributions to the consumption rates of pulverized coal (pc) char during combustion, particularly in oxy-fuel environments. Fully quantifying the contribution of these gasification reactions has proven to be difficult, due to the dearth of knowledge of gasification rates at the elevated particle temperatures associated with typical pc char combustion processes, as well as the complex interaction of oxidation and gasification reactions. Gasification reactions tend to become more important at higher char particle temperatures (because of their high activation energy) and they tend to reduce pc oxidation due to their endothermicity (i.e. cooling effect). The work reported here attempts to quantify the influence of the gasification reaction of CO2 in a rigorous manner by combining experimental measurements of the particle temperatures and consumption rates of size-classified pc char particles in tailored oxy-fuel environments with simulations from a detailed reacting porous particle model. The results demonstrate that a specific gasification reaction rate relative to the oxidation rate (within an accuracy of approximately +/- 20% of the pre-exponential value), is consistent with the experimentally measured char particle temperatures and burnout rates in oxy-fuel combustion environments. Conversely, the results also show, in agreement with past calculations, that it is extremely difficult to construct a set of kinetics that does not substantially overpredict particle temperature increase in strongly oxygen-enriched N2 environments. This latter result is believed to result from deficiencies in standard oxidation mechanisms that fail to account for falloff in char oxidation rates at high temperatures.

More Details

An Assessment of Current Understanding of the Greenhouse Gas Impacts from H2 Emissions

Shaddix, Christopher R.

With the anticipated growth in hydrogen generation and use as part of a broad shift in energy use away from fossil fuels, concerns have been raised regarding the impact of increased H2 emissions on global warming. Atmospheric scientists have long recognized that H2 emissions into the atmosphere do have an indirect impact on global warming, largely because a portion of emitted H2 is consumed by the hydroxyl radical (OH), which is the primary reactant that removes the potent greenhouse gas methane from the atmosphere. Therefore, increases in H2 emissions will result in decreases in the average OH concentrations in the atmosphere and an increase in the atmospheric lifetime of methane. Various assessments of the impact of H2 emissions on global warming have been performed over the past couple of decades. These assessments have yielded significant variability and recognized uncertainty in the magnitude of the warming effect of a given quantity of emitted H2, and an even greater uncertainty in the magnitude of H2 leakage and releases that can be anticipated with an expanded H2 infrastructure. Consequently, definitive estimates of the magnitude of the warming effect of additional emitted H2 are lacking. However, given the current understanding of the warming potential of emitted H2 and given reasonable expectations of the emission rate of an expanded H2 infrastructure, it is anticipated that warming effects from emitted H2 will offset no more than 5% of the reduction in warming associated with avoided CO2 emissions from using clean H2. Further, it is highly unlikely that the warming effects from emitted H2 will offset more than 10% of the benefit from avoided CO2 emissions, at least as considered over a typical 100-year accounting period. Because of the short atmospheric lifetimes of H2 and methane, however, the warming effect of emitted H2 is enhanced over the first few years following increases in H2 emission.

More Details

Analysis of laser focusing effect on quantification of LII images

Proceedings of the Combustion Institute

Shaddix, Christopher R.; Williams, Timothy C.

Laser-induced incandescence (LII) is a widely used technique for measuring soot concentrations. For flame applications LII is frequently deployed as a planar diagnostic to measure the two-dimensional soot field. However, when the laser sheet is focused, as is typical to reach the requisite laser fluence level and achieve good spatial resolution, the complex laser power dependence of the LII signal generation process can introduce a large variation in LII signal sensitivity across an LII image. In this work, this effect is quantified for the first time as a function of laser pulse fluence, using a typical planar LII excitation scheme with a clipped Gaussian YAG laser beam focused with a 1 m focal length lens. Furthermore, the cross-sectional energy distribution in the laser sheet was measured across the image plane, to relate the details of the laser sheet focal properties with the resultant LII behavior. The results show that a unique laser fluence level (referenced to the focal plane) exists whereby there is essentially no dependence of LII signal on position relative to the focal plane. However, at lower or higher fluences, the radial signals either decrease (low fluence) or increase (high fluence) rapidly with increasing distance away from the focal point. For measurements using an LII 'plateau' laser fluence level, as is usual in environments with significant optical depth (i.e. sufficiently strong soot levels), the LII signals are found to be 2.5X larger 40 mm away from the focal point. An analysis conducted by combining a previously measured LII fluence dependence for a top-hat laser profile with the laser sheet cross-sections measured in this work shows general agreement with the measured results for LII signal variation. Further, the sensitivity of LII signals at high fluences to the laser beam spatial profile, particularly away from the sheet focus, is highlighted.

More Details

Computational fluid dynamics analysis of char conversion in Sandia's pressurized entrained flow reactor

Review of Scientific Instruments

Bösenhofer, Markus; Hecht, Ethan S.; Shaddix, Christopher R.; König, Bernhard; Rieger, Johannes; Harasek, Michael

Design and analysis of practical reactors utilizing solid feedstocks rely on reaction rate parameters that are typically generated in lab-scale reactors. Evaluation of the reaction rate information often relies on assumptions of uniform temperature, velocity, and species distributions in the reactor, in lieu of detailed measurements that provide local information. This assumption might be a source of substantial error, since reactor designs can impose significant inhomogeneities, leading to data misinterpretation. Spatially resolved reactor simulations help understand the key processes within the reactor and support the identification of severe variations of temperature, velocity, and species distributions. In this work, Sandia's pressurized entrained flow reactor is modeled to identify inhomogeneities in the reaction zone. Tracer particles are tracked through the reactor to estimate the residence times and burnout ratio of introduced coal char particles in gasifying environments. The results reveal a complex mixing environment for the cool gas and particles entering the reactor along the centerline and the main high-speed hot gas reactor flow. Furthermore, the computational fluid dynamics (CFD) results show that flow asymmetries are introduced through the use of a horizontal gas pre-heating section that connects to the vertical reactor tube. Computed particle temperatures and residence times in the reactor differ substantially from the idealized plug flow conditions typically evoked in interpreting experimental measurements. Furthermore, experimental measurements and CFD analysis of heat flow through porous refractory insulation suggest that for the investigated conditions (1350 °C, <20 atm), the thermal conductivity of the insulation does not increase substantially with increasing pressure.

More Details

Single-camera, single-shot, time-resolved laser-induced incandescence decay imaging

Optics Letters

Chen, Yi; Cenker, Emre; Richardson, Daniel R.; Kearney, S.P.; Halls, Benjamin R.; Skeen, Scott A.; Shaddix, Christopher R.; Guildenbecher, Daniel R.

Knowledge of soot particle sizes is important for understanding soot formation and heat transfer in combustion environments. Soot primary particle sizes can be estimated by measuring the decay of time-resolved laser-induced incandescence (TiRe-LII) signals. Existing methods for making planar TiRe-LII measurements require either multiple cameras or time-gate sweeping with multiple laser pulses, making these techniques difficult to apply in turbulent or unsteady combustion environments. Here, we report a technique for planar soot particle sizing using a single high-sensitivity, ultra-high-speed 10 MHz camera with a 50 ns gate and no intensifier. With this method, we demonstrate measurements of background flame luminosity, prompt LII, and TiRe-LII decay signals for particle sizing in a single laser shot. The particle sizing technique is first validated in a laminar non-premixed ethylene flame. Then, the method is applied to measurements in a turbulent ethylene jet flame.

More Details

High temperature gasification of high heating-rate chars using a flat-flame reactor

Applied Energy

Li, Tian; Niu, Yanqing; Wang, Liang; Shaddix, Christopher R.; Løvås, Terese

The increasing interest in gasification and oxy-fuel combustion of biomass has heightened the need for a detailed understanding of char gasification in industrially relevant environments (i.e., high temperature and high-heating rate). Despite innumerable studies previously conducted on gasification of biomass, very few have focused on such conditions. Consequently, in this study the high-temperature gasification behaviors of biomass-derived chars were investigated using non-intrusive techniques. Two biomass chars produced at a heating rate of approximately 104 K/s were subjected to two gasification environments and one oxidation environment in an entrained flow reactor equipped with an optical particle-sizing pyrometer. A coal char produced from a common U.S. low sulfur subbituminous coal was also studied for comparison. Both char and surrounding gas temperatures were precisely measured along the centerline of the furnace. Despite differences in the physical and chemical properties of the biomass chars, they exhibited rather similar reaction temperatures under all investigated conditions. On the other hand, a slightly lower particle temperature was observed in the case of coal char gasification, suggesting a higher gasification reactivity for the coal char. A comprehensive numerical model was applied to aid the understanding of the conversion of the investigated chars under gasification atmospheres. In addition, a sensitivity analysis was performed on the influence of four parameters (gas temperature, char diameter, char density, and steam concentration) on the carbon conversion rate. The results demonstrate that the gas temperature is the most important single variable influencing the gasification rate.

More Details

The effect of oxygen penetration on apparent pulverized coal char combustion kinetics

2018 Spring Technical Meeting of the Western States Section of the Combustion Institute, WSSCI 2018

Shaddix, Christopher R.; Hecht, Ethan S.; Gonzalo-Tirado, Cristina

Apparent char kinetic rates are commonly used to predict pulverized coal char burning rates. These kinetic rates quantify the char burning rate based on the temperature of the particle and the oxygen concentration at the particle surface, thereby inherently neglecting the impact of variations in the penetration of oxygen into the char on the predicted burning rate. To investigate the impact of variable extents of penetration during Zone II burning conditions, experimental measurements were performed of char particle combustion temperature and burnout for a common U.S. subbituminous coal burning in an optical laminar entrained flow reactor with either helium or nitrogen diluents. The combination of much higher thermal conductivity and mass diffusivity in the helium environments resulted in substantially cooler char combustion temperatures than in equivalent N2 environments. Measured char burnout was similar in the two environments for a given bulk oxygen concentration but was approximately 60% higher in helium environments for a given char combustion temperature. Detailed particle simulations of the experimental conditions confirmed a 60% higher burning rate in the helium environments as a function of char temperature, whereas catalyst theory predicts that the burning rate in helium could be as high as 90% greater than in nitrogen, in the limit of large Thiele modulus (i.e. near the diffusion limit). For application combustion in CO2 environments (e.g. for oxy-fuel combustion), these results demonstrate that due to differences in oxygen diffusivity the apparent char oxidation rates will be lower, but by no more than 9% relative to burning rates measured in nitrogen environments.

More Details

Validation and uncertainty quantification analysis (VUQ) of a char oxidation model

10th U.S. National Combustion Meeting

Díaz-Ibarra, Oscar; Spinti, Jennifer; Smith, Philip; Shaddix, Christopher R.; Hecht, Ethan S.

The Reacting Particle and Boundary Layer (RPBL) model computes the transient-state conditions for a spherical, reacting, porous char particle and its reacting boundary layer. RPBL computes the transport of gaseous species with a Maxwell-Stefan multicomponent approach. Mass transfer diffusion coefficients are corrected to account for a non-stagnant bulk flow condition using a factor based on the Sherwood number. The homogeneous gas phase reactions are modeled with a syngas mechanism, and the heterogeneous reactions are calculated with a six-step reaction mechanism. Both homogeneous and heterogeneous reaction mechanisms are implemented in Cantera. Carbon density (burnout) is computed using the Bhatia and Perlmutter model to estimate the evolution of the specific surface area. Energy equations are solved for the gas temperature and the particle temperature. The physical properties of the particle are computed from the fractions of ash, carbon, and voids in the particle. The void fraction is computed assuming a constant diameter particle during the reaction process. RPBL solves a particle momentum equation in order to estimate the position of the particle in a specific reactor. We performed a validation and uncertainty quantification study with RPBL using experimental char oxidation data obtained in an optically accessible, laminar, entrained flow reactor at Sandia National Laboratories. We used a consistency analysis to compare RPBL and experimental data (with its associated uncertainty) for three coal chars over a range of particle sizes. We found consistency for particle temperature and velocity across all experiments.

More Details

A new method to compute the proper radiant heat transfer correction of bare-wire thermocouple measurements

10th U.S. National Combustion Meeting

Shaddix, Christopher R.

The proper consideration of the radiation correction for bare-wire thermocouple measurements requires consideration of the convective and radiative heat transfer of the thermocouple with its surroundings, as well as conductive heat transfer between the thermocouple bead and the connecting thermocouple wires. This has rarely been considered in the past, and to do so has involved complex simulation of the complete thermocouple energy balance. This paper reports on a new, easy-to-implement approach for calculating the proper radiant correction for thermocouples, subject to uncertainties associated with the relevant thermocouple and gas properties and limitations to characterizing convective heat transfer to the thermocouple bead and wires via standard correlations. Examples of the radiation correction computed with this new method as a function of temperature and bead and wire size are given, and are compared with traditional approaches considering heat transfer around either the thermocouple bead or the thermocouple wire.

More Details

Kinetic modeling of the formation and growth of inorganic nano-particles during pulverized coal char combustion in O2/N2 and O2/CO2 atmospheres

Combustion and Flame

Niu, Yanqing; Wang, Shuai; Shaddix, Christopher R.; Hui, Shi'en

In the formation of nano-particles during coal char combustion, the vaporization of inorganic components in char and the subsequent homogeneous particle nucleation, heterogeneous condensation, coagulation, and coalescence play decisive roles. However, conventional measurements cannot provide detailed information on the dynamics of nano-particle formation and evolution. In this work, a sophisticated intrinsic char kinetics model that considers ash effects (including ash film formation, ash dilution, and ash vaporization acting in tandem), both oxidation and gasification by CO2 and H2O, homogeneous particle nucleation, heterogeneous vapor condensation, coagulation, and coalescence mechanisms is developed and used to compare the temporal evolution of the number and size of nano-particles during coal char particle combustion as a function of char particle size, ash content, and oxygen content in O2/N2 and O2/CO2 atmospheres. Based on comparisons with measurements of char particle temperature, carbon conversion, mineral vaporization, and mean size of nano-particles at various residence times, the model can accurately predict the transient combustion of pulverized coal char particles and nano-particle formation and growth. Model results show that in either O2/N2 or O2/CO2 atmospheres, the char combustion temperature has a dominant effect on the formation and growth of nano-particles. High char burning temperatures result in a high mineral vaporization rate within the char particle, and subsequent high nucleation and condensation rate, and consequently more and larger nano-particles. As a result, high oxygen content, low ash content, and small sized char particles, all of which promotes high local char burning temperatures, yield more nano-particles and shift the nano-particle size distribution to larger sizes. In comparison to combustion in O2/N2, both the number density and size of the nano-particles formed in O2/CO2 are lower. Unlike condensation, which contributes to particle growth until the vapor molecules are fully consumed, nucleation ceases during the last stage of char combustion.

More Details

The effect of oxygen enrichment on soot formation and thermal radiation in turbulent, non-premixed methane flames

Proceedings of the Combustion Institute

Shaddix, Christopher R.; Williams, T.C.

Non-premixed oxy-fuel combustion of natural gas is used in industrial applications where high-intensity heat is required, such as glass manufacturing and metal forging and shaping. In these applications, the high flame temperatures achieved by oxy-fuel combustion increase radiative heat transfer to the surfaces of interest and soot formation within the flame is desired for further augmentation of radiation. However, the high cost of cryogenic air separation has limited the penetration of oxy-fuel combustion technologies. New approaches to air separation are being developed that may reduce oxygen production costs, but only for intermediate levels of oxygen enrichment of air. To determine the influence of oxygen enrichment on soot formation and radiation, we developed a non-premixed coannular burner in which oxygen concentrations and oxidizer flow rates can be independently varied, to distinguish the effects of turbulent mixing intensity from oxygen enrichment on soot formation and flame radiation. Local radiation intensities, soot concentrations, and soot temperatures have been measured using a thin-film thermopile, planar laser-induced incandescence (LII), and two-color imaging pyrometry, respectively. The measurements show that soot formation increases as the oxygen concentration decreases from 100% to 50%, helping to moderate a decrease in overall flame radiation. An increase in turbulence intensity has a marked effect on flame height, soot formation and thermal radiation, leading to decreases in all of these. The soot temperature decreases with a decrease in the oxygen concentration and increases with an increase in turbulent mixing intensity. Altogether, the results suggest that properly designed oxygen-enriched burners that enhance soot formation for intermediate levels of oxygen purity may be able to achieve thermal radiation intensities as high as 85% of traditional oxy-fuel burners utilizing high-purity oxygen.

More Details

Quantifying soot concentrations in turbulent non-premixed jet flames

2016 Spring Technical Meeting of the Western States Section of the Combustion Institute, WSSCI 2016

Shaddix, Christopher R.; Zhang, Jiayao; Williams, T.C.

Truly quantifying soot concentrations within turbulent flames is a difficult prospect. Laser extinction measurements are constrained by spatial resolution limitations and by uncertainty in the local soot extinction coefficient. Laser-induced incandescence (LII) measurements rely on calibration against extinction and thereby are plagued by uncertainty in the extinction coefficient. In addition, the LII measurements are subject to signal trapping in flames with significant soot concentrations and/or flame widths. In the study reported here, a turbulent ethylene non-premixed jet flame (jet exit Reynolds number of 20,000) is investigated by a combination of LII and full-flame HeNe laser (633 nm) extinction measurements. The LII measurements have been calibrated against extinction measurements in a laminar ethylene flame. An extinction coefficient previously measured in laminar ethylene flames is used as the basis of the calibration. The time-Averaged LII data in the turbulent flame has been corrected for signal trapping, which is shown to be significant in this flame, and then the line-of-sight extinction for a theoretical 633 nm light source has been calculated acrob the LII-determined soot concentration field. Comparison of the LII-based extinction with that actual measured along the flame centerline is favorable, showing an average deviation of approximately 10%. This lends credence to the measured values of soot concentrations in the flame and also gives a good indication of the level of uncertainty in the measured soot concentrations, subject to the additional uncertainty in the previously measured extinction coefficient, estimated to be ±15%.

More Details

Novel metal-organic frameworks for efficient stationary sources via oxyfuel combustion

Nenoff, T.M.; Sava Gallis, Dorina F.; Parkes, Marie V.; Greathouse, Jeffery A.; Rodriguez, Mark A.; Paap, Scott M.; Williams, T.C.; Shaddix, Christopher R.

Oxy-fuel combustion is a well-known approach to improve the heat transfer associated with stationary energy processes. Its overall penetration into industrial and power markets is constrained by the high cost of existing air separation technologies for generating oxygen. Cryogenic air separation is the most widely used technology for generating oxygen but is complex and expensive. Pressure swing adsorption is a competing technology that uses activated carbon, zeolites and polymer membranes for gas separations. However, it is expensive and limited to moderate purity O₂ . MOFs are cutting edge materials for gas separations at ambient pressure and room temperature, potentially revolutionizing the PSA process and providing dramatic process efficiency improvements through oxy-fuel combustion. This LDRD combined (1) MOF synthesis, (2) gas sorption testing, (3) MD simulations and crystallography of gas siting in pores for structure-property relationship, (4) combustion testing and (5) technoeconomic analysis to aid in real-world implementation.

More Details

Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

Applied Optics

Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; Meyer, Terrence R.

Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. To quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals are observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10-50 kHz. Guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.

More Details

A sophisticated model to predict ash inhibition during combustion of pulverized char particles

Proceedings of the Combustion Institute

Niu, Yanqing; Shaddix, Christopher R.

Final burnout of char particles from practical fuels such as coal and biomass occurs in the presence of a large ash component. Also, newly utilized coal resources, such as those from India, often contain much larger ash fractions than have traditionally been utilized. In the past, the inhibitory influence of ash on pulverized coal particle combustion has been most frequently modeled using an ash film model, though such films are rarely found when examining partially combusted particles. Conversely, some measurements have suggested that mineral components exposed on the surface of burning pulverized coal (pc) particles may diffuse back into the char matrix, the effect of which can be modeled as an ash dilution effect. To explore the implications of these different ash inhibition models on the temporal evolution of char combustion during burnout, we have developed a new computational model that considers the possibility of an ash film effect, an ash dilution effect, or some arbitrary combination of the two effects acting in tandem, which is the most realistic scenario. This new model predicts that restricted diffusion through the ash film has a significant impact on the char burnout rate throughout its lifetime, whereas char dilution only inhibits combustion significantly when most of the char has been consumed and the combustion mode shifts from predominantly external diffusion control to mixed diffusion control, with sensitivity to both external and internal diffusion resistance. The comparison of the model predictions with experimental results also confirms the previously suggested need to include gasification reaction steps when modeling coal char combustion.

More Details

A mechanistic char oxidation model consistent with observed CO 2/CO production ratios

Proceedings of the Combustion Institute

Geier, M.; Shaddix, Christopher R.; Holzleithner, F.

Reliable prediction of char conversion, heat release, and particle temperature during heterogeneous char oxidation relies upon quantitative calculation of the CO2/CO production ratio. This ratio depends strongly on the surface temperature, but also on the local partial pressure of oxygen and thus becomes more important in simulations of oxy-fuel or pressurized combustion systems. Existing semi-empirical intrinsic kinetic models of char combustion have been calibrated against the temperature-dependence of the CO2/CO production ratio, but have neglected the effect of the local oxygen concentration. In this study we employ steady-state analysis to demonstrate the limitations of the existing 3-step semi-global kinetics models and to show the necessity of using a 5-step model to adequately capture the temperature- and oxygen-dependence of the CO2/CO production ratio. A suitable 5-step heterogeneous reaction mechanism is developed and its rate parameters fit to match CO2/CO production data, global reaction orders, and activation energies reported in the literature. The model predictions are interrogated for a broad range of conditions characteristic of pressurized, oxy-fuel, and conventional high-temperature char combustion, for which essentially no experimental information on the CO2/CO production ratio is available. The results suggest that the CO2/CO production ratio may be considerably lower than that estimated with existing power-law correlations for oxygen partial pressures less than 10 kPa and surface temperatures higher than 1600 K. To assist with implementation of the mechanistic CO2/CO production ratio results, an analytical procedure for calculating the CO2/CO production ratio is presented. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

More Details

Pulverized coal char combustion rates in different diluent gases: The influence of gas diffusivity

8th US National Combustion Meeting 2013

Shaddix, Christopher R.; Gonzalo-Tirado, Cristina

One of the characteristics of CO2 that influences the oxy-fuel combustion of pulverized coal char is its low diffusivity, in comparison to N2. To further explore how the gas diffusivity influences the apparent rate of pulverized char combustion, experiments were conducted in a laminar, optical flow reactor that has been extensively used to quantify char particle combustion rates. Helium, nitrogen, and CO2 diluent gases were employed as diluent gases. The diffusivity of oxygen through helium is 3.5 times higher than through nitrogen, tending to supply more oxygen to the particle and accelerating the particle combustion rate and heat release. However, the thermal conductivity of helium is 5 times larger than that of nitrogen, tending to keep the burning char particle temperature close to that of the surrounding gas. The combination of these two factors makes char combustion in helium atmospheres significantly more kinetically controlled than combustion of char particles in nitrogen atmospheres. The char particle combustion temperatures were highest for combustion in N2 environments, with combustion in CO2 and He environments producing nearly identical char combustion temperatures, despite much more rapid particle burnout in helium. Preliminary analysis of the apparent char kinetic burning rate in He yields a rate that is approximately three times greater than the rate in N2, likely reflecting the greater internal penetration of oxygen into char particles burning in helium. Analysis with intrinsic kinetic models is being applied to better understand the data and therefore the role of gas diffusivity on apparent kinetic rates of char combustion.

More Details

Joint temperature-volume fraction statistics of soot in turbulent non-premixed jet flames

8th US National Combustion Meeting 2013

Shaddix, Christopher R.; Zhang, Jiayao

Soot emissions from internal combustion engines and aviation gas turbine engines face increasingly stringent regulation, but available experimental datasets for sooting turbulent combustion model development and validation are largely lacking, in part due to the difficulty of making quantitative space- and time-resolved measurements in this type of flame. To address this deficiency, we have performed a number of different laser and optical diagnostic measurements in sooting, nonpremixed jet flames fueled by ethylene or a prevaporized JP-8 surrogate. Most laser diagnostic techniques inherently lose their quantitative rigor when significant laser beam and signal attenuation occur in sooting flames. However, the '3-line' approach to simultaneous measurement of soot concentration (on the basis of laser extinction) and soot temperature (on the basis of 2-color pyrometry) actually relies on the presence of significant laser attenuation to yield accurate measurements. In addition, the 3-line approach yields complete time-resolved information. In the work reported here, we have implemented the 3-line diagnostic in well-controlled non-premixed ethylene and JP-8 jet flames with a fuel exit Reynolds number of 20,000 using tapered, uncooled alumina refractory probes with a 10 mm probe end separation. Bandpass filters with center wavelengths of 850 nm and 1000 nm were used for the pyrometry measurement, with calibration provided by a hightemperature blackbody source. Extinction of a 635 nm red diode laser beam was used to determine soot volume fraction. Data were collected along the flame centerline at many different heights and radial traverses were performed at selected heights. A data sampling rate of 5 kHz was used to resolve the turbulent motion of the soot. The results for the ethylene flame show a mean soot volume fraction of 0.4 ppm at mid-height of the flame, with a mean temperature of 1450 K. At any given instant, the soot volume fraction typically falls between 0.2 and 0.6 ppm with a temperature between 1300 and 1650 K. At greater heights in the flame, the soot intermittency increases and its mean concentration decreases while its mean temperature increases. In the JP-8 surrogate flame, the soot concentration reaches a mean value of 1.3 ppm at mid-height of the flame, but the mean soot temperature is only 1270 K. Elevated soot concentrations persist for a range of heights in the JP-8 flame, with a rise in mean temperature to 1360 K, before both soot volume fraction and temperature tail off at the top of this smoking flame.

More Details

Design of model-friendly turbulent non-premixed jet burners for C 2+ hydrocarbon fuels

Review of Scientific Instruments

Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.

Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H2, CO, andor methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20 000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet. © 2011 American Institute of Physics.

More Details

Understanding and predicting soot generation in turbulent non-premixed jet flames

Shaddix, Christopher R.; Zhang, Jiayao Z.; Oefelein, Joseph C.; Pickett, Lyle M.

This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model to accurately predict gas temperatures and thus soot formation rates. When including such a radiation model, the LES model predicts mean soot concentrations within 30% in the ethylene jet flame.

More Details

Oxy-combustion of pulverized coal : modeling of char-combustion kinetics

Geier, M.; Shaddix, Christopher R.

In this study, char combustion of pulverized coal under oxy-fuel combustion conditions was investigated on the basis of experimentally observed temperature-size characteristics and corresponding predictions of numerical simulations. Using a combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometer, combustion characteristics (particle temperatures and apparent size) of pulverized coal char particles was determined for combustion in both reduced oxygen and oxygen-enriched atmospheres with either a N{sub 2} or CO{sub 2} bath gas. The two coals investigated were a low-sulfur, high-volatile bituminous coal (Utah Skyline) and a low-sulfur subbituminous coal (North Antelope), both size-classified to 75-106 {micro}m. A particular focus of this study lies in the analysis of the predictive modeling capabilities of simplified models that capture char combustion characteristics but exhibit the lowest possible complexity and thus facilitate incorporation in existing computational fluid dynamics (CFD) simulation codes. For this purpose, char consumption characteristics were calculated for char particles in the size range 10-200 {micro}m using (1) single-film, apparent kinetic models with a chemically 'frozen' boundary layer, and (2) a reacting porous particle model with detailed gas-phase kinetics and three separate heterogeneous reaction mechanisms of char-oxidation and gasification. A comparison of model results with experimental data suggests that single-film models with reaction orders between 0.5 and 1 with respect to the surface oxygen partial pressure may be capable of adequately predicting the temperature-size characteristics of char consumption, provided heterogeneous (steam and CO{sub 2}) gasification reactions are accounted for.

More Details

Development of efficient, integrated cellulosic biorefineries : LDRD final report

Shaddix, Christopher R.; Hecht, Ethan S.; Teh, Kwee-Yan T.; Buffleben, George M.; Dibble, Dean C.

Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material in thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data supplied by a recent report from the National Research Council (NRC). The thermochemical system analysis revealed that most of the system inefficiency is associated with the gasification process and subsequent tar reforming step. For the biochemical process, the steam generation from residue combustion, providing the requisite heating for the conventional pretreatment and alcohol distillation processes, was shown to dominate the exergy loss. An overall energy balance with different potential distillation energy requirements shows that as much as 30% of the biomass energy content may be available in the future as a feedstock for thermochemical production of liquid fuels.

More Details

Oxy-combustion of pulverized coal : modeling of char combustion kinetics

Geier, M.; Shaddix, Christopher R.

In this study, char combustion of pulverized coal under oxy-fuel combustion conditions was investigated on the basis of experimentally observed temperature-size characteristics and corresponding predictions of numerical simulations. Using a combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometer, combustion characteristics (particle temperatures and apparent size) of pulverized coal char particles was determined for combustion in both reduced oxygen and oxygen-enriched atmospheres with either a N{sub 2} or CO{sub 2} bath gas. The two coals investigated were a low-sulfur, high-volatile bituminous coal (Utah Skyline) and a low-sulfur subbituminous coal (North Antelope), both size-classified to 75-106 {micro}m. A particular focus of this study lies in the analysis of the predictive modeling capabilities of simplified models that capture char combustion characteristics but exhibit the lowest possible complexity and thus facilitate incorporation in existing computational fluid dynamics (CFD) simulation codes. For this purpose, char consumption characteristics were calculated for char particles in the size range 10-200 {micro}m using (1) single-film, apparent kinetic models with a chemically 'frozen' boundary layer, and (2) a reacting porous particle model with detailed gas-phase kinetics and three separate heterogeneous reaction mechanisms of char-oxidation and gasification. A comparison of model results with experimental data suggests that single-film models with reaction orders between 0.5 and 1 with respect to the surface oxygen partial pressure may be capable of adequately predicting the temperature-size characteristics of char consumption, provided heterogeneous (steam and CO{sub 2}) gasification reactions are accounted for.

More Details

Effect of CO2 gasification reaction on oxycombustion of pulverized coal char

Shaddix, Christopher R.

For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO{sub 2} levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO{sub 2} gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO{sub 2} reaction rates for a high-volatile bituminous coal char particle (130 {micro}m diameter) reacting in several O{sub 2} concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO{sub 2}, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O{sub 2} concentration at the particle surface. The CO{sub 2} gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO{sub 2} gasification reaction increases the char conversion rate for combustion at low O{sub 2} concentrations, but decreases char conversion for combustion at high O{sub 2} concentrations. These calculations give new insight into the complexity of the effects from the CO{sub 2} gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.

More Details

Evaluation of effect of particle size on oxy-fuel combustion of pulverized coal

26th Annual International Pittsburgh Coal Conference 2009, PCC 2009

Geier, M.; Hecht, E.S.; Shaddix, Christopher R.

Previous research has highlighted the important role of reduced oxygen diffusivity through the particle boundary layer during oxy-fuel combustion with flue gas recirculation (i.e. high CO2 environments). Single-particle modeling of this process also revealed that partial conversion of the carbon oxidation product CO in the particle boundary layer was important during oxygen-enhanced combustion for particles approximately 130 μm in diameter. In this study, the influence of oxy-fuel combustion conditions on char combustion rates is being investigated both experimentally and through detailed modeling, for several different characteristic pulverized coal particle sizes. Both a high-volatile bituminous coal (Utah Skyline) and a typical PRB low-sulfur subbituminous coal (North Antelope) are being investigated. A combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometer is being used to determine the combustion kinetics of pulverized coal chars when burning in both reduced oxygen and oxygen-enriched atmospheres with either a N2 or CO2 bath gas. Preliminary calculations using the particle combustion code SKIPPY have shown that boundary layer conversion of CO becomes important for oxy-fuel combustion of char particles larger than 60 μm in diameter and, for a char particle reactivity characteristic of high-volatile bituminous coals, the boundary layer reactions result in over a 20% enhancement in the char burning rate for particle sizes between 70-80 μm in diameter. Copyright © (2009) by the International Pittsburgh Coal Conference.

More Details

Evaluation of the irising effect of a slow-gating ICCD on laser-induced incandescence measurements of soot

Proposed for publication in Review of Scientific Instruments.

Shaddix, Christopher R.

Intensified charge-coupled devices (ICCDs) are used extensively in many scientific and engineering environments to image weak or temporally short optical events. To optimize the quantum efficiency of light collection, many of these devices are chosen to have characteristic intensifier gate times that are relatively slow, on the order of tens of nanoseconds. For many measurements associated with nanosecond laser sources, such as scattering-based diagnostics and most laser-induced fluorescence applications, the signals rise and decay sufficiently fast during and after the laser pulse that the intensifier gate may be set to close after the cessation of the signal and still effectively reject interferences associated with longer time scales. However, the relatively long time scale and complex temporal response of laser-induced incandescence (LII) of nanometer-sized particles (such as soot) offer a difficult challenge to the use of slow-gating ICCDs for quantitative measurements. In this paper, ultraviolet Rayleigh scattering imaging is used to quantify the irising effect of a slow-gating scientific ICCD camera, and an analysis is conducted of LII image data collected with this camera as a function of intensifier gate width. The results demonstrate that relatively prompt LII detection, generally desirable to minimize the influences of particle size and local gas pressure and temperature on measurements of the soot volume fraction, is strongly influenced by the irising effect of slow-gating ICCDs.

More Details

Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor

Combustion Science and Technology

Williams, T.C.; Shaddix, Christopher R.; Schefer, Robert W.

Future energy systems based on gasification of coal or biomass for co-production of electrical power and fuels may require gas turbine operation on unusual gaseous fuel mixtures. In addition, global climate change concerns may dictate the generation of a CO2 product stream for end-use or sequestration, with potential impacts on the oxidizer used in the gas turbine. In this study the operation at atmospheric pressure of a small, optically accessible swirl-stabilized premixed combustor, burning fuels ranging from pure methane to conventional and H2-rich and H2-lean syngas mixtures is investigated. Both air and CO2-diluted oxygen are used as oxidizers. CO and NOx emissions for these flames have been determined from the lean blowout limit to slightly rich conditions (1.03). In practice, CO2-diluted oxygen systems will likely be operated close to stoichiometric conditions to minimize oxygen consumption while achieving acceptable NOx performance. The presence of hydrogen in the syngas fuel mixtures results in more compact, higher temperature flames, resulting in increased flame stability and higher NOx emissions. Consistent with previous experience, the stoichiometry of lean blowout decreases with increasing H2 content in the syngas. Similarly, the lean stoichiometry at which CO emissions become significant decreases with increasing H2 content. For the mixtures investigated, CO emissions near the stoichiometric point do not become significant until 0.95. At this stoichiometric limit, CO emissions rise more rapidly for combustion in O2-CO2 mixtures than for combustion in air.

More Details

Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion

Proceedings of the Combustion Institute

Molina, Alejandro; Shaddix, Christopher R.

Oxygen/carbon dioxide recycle coal combustion is actively being investigated because of its potential to facilitate CO2 sequestration and to achieve emission reductions. In the work reported here, the effect of enhanced oxygen levels and CO2 bath gas is independently analyzed for their influence on single-particle pulverized coal ignition of a U.S. eastern bituminous coal. The experiments show that the presence of CO2 and a lower O2 concentration increase the ignition delay time but have no measurable effect on the time required to complete volatile combustion, once initiated. For the ignition process observed in the experiments, the CO 2 results are explained by its higher molar specific heat and the O2 results are explained by the effect of O2 concentration on the local mixture reactivity. Particle ignition and devolatilization properties in a mixture of 30% O2 in CO2 are very similar to those in air.

More Details

Effect of furnace operating conditions on alkali vaporization, batch carryover, and the formation of so2and NO in an oxy-fuel fired container glass furnace

Glass Technology: European Journal of Glass Science and Technology Part A

MOLINA OCHOA, Alejandro N.; Shaddix, Christopher R.; Blevins, Linda G.; Walsh, Peter M.; Neufeld, John W.

Oxygen-fuel fired glass melting furnaces have successfully reduced NO x and particulate emissions and improved the furnace energy efficiency relative to the more conventional air-fuel fired technology. However, full optimisation of the oxygen/fuel approach (particularly with respect to crown refractory corrosion) is unlikely to be achieved until there is improved understanding of the effects of furnace operating conditions on alkali vaporization, batch carryover, and the formation of gaseous air pollutants in operating furnaces. In this investigation, continuous online measurements of alkali concentration (by laser induced breakdown spectroscopy) were coupled with measurements of the flue gas composition in the exhaust of an oxygen/natural gas fired container glass furnace. The burner stoichiometry was purposefully varied while maintaining normal glass production. The data demonstrate that alkali vaporization and SO2 release increase as the oxygen concentration in the exhaust decreases. NOx emissions showed a direct correlation with the flow rate of infiltrated air into the combustion space. The extent of batch carryover was primarily affected by variations in the furnace differential pressure. The furnace temperature did not vary significantly during the measurement campaign, so no clear correlation could be obtained between the available measurements of furnace temperature and alkali vaporization.

More Details

Effect of syngas composition on emissions from an idealized gas turbine combustor

23rd Annual International Pittsburgh Coal Conference, PCC - Coal-Energy, Environment and Sustainable Development

Williams, T.C.; Shaddix, Christopher R.; Schefer, Robert W.

Future energy systems based on gasification of coal or biomass for co-production of electrical power and gaseous or liquid fuels may require gas turbine operation on unusual fuel mixtures. In addition, global climate change concerns may dictate the production of a CO2 product stream for end-use or sequestration, with potential impacts on the oxidizer used in the gas turbine. In this study the operation at atmospheric pressure of a small, optically accessible swirl-stabilized premixed combustor, burning fuels ranging from pure methane to conventional and H2-rich and H2-lean syngas mixtures is investigated. Both air and CO2-diluted oxygen are used as the oxidizers. CO and NOx emissions for these flames have been determined over the full range of stoichiometrics from the lean blow-off limit to slightly rich conditions (φ ∼ 1.03). The presence of hydrogen in the syngas fuel mixtures results in more compact, higher temperature flames, resulting in increased flame stability and higher NOx emissions. The lean blowoff limit and the lean stoichiometry at which CO emissions become significant both decrease with increasing H2 content in the syngas. For the investigated mixtures, CO emissions near the stoichiometric point do not become significant until (φ > 0.95. At this stoichiometric limit, where dilute-oxygen power systems would preferably operate, CO emissions rise more rapidly for combustion in O2-CO2 mixtures than for combustion in air.

More Details

Flame height measurement of laminar inverse diffusion flames

Proposed for publication in Combustion and Flame.

Williams, T.C.; Shaddix, Christopher R.

Flame heights of co-flowing cylindrical ethylene-air and methane-air laminar inverse diffusion flames were measured. The luminous flame height was found to be greater than the height of the reaction zone determined by planar laser-induced fluorescence (PLIF) of hydroxyl radicals (OH) because of luminous soot above the reaction zone. However, the location of the peak luminous signals along the centerline agreed very well with the OH flame height. Flame height predictions using Roper's analysis for circular port burners agreed with measured reaction zone heights when using values for the characteristic diffusion coefficient and/or diffusion temperature somewhat different from those recommended by Roper. The fact that Roper's analysis applies to inverse diffusion flames is evidence that inverse diffusion flames are similar in structure to normal diffusion flames.

More Details

Characteristics and sources of intermediate size particles in recovery boilers : final project report

Shaddix, Christopher R.

As part of the U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) Industries of the Future (IOF) Forest Products research program, a collaborative investigation was conducted on the sources, characteristics, and deposition of particles intermediate in size between submicron fume and carryover in recovery boilers. Laboratory experiments on suspended-drop combustion of black liquor and on black liquor char bed combustion demonstrated that both processes generate intermediate size particles (ISP), amounting to 0.5-2% of the black liquor dry solids mass (BLS). Measurements in two U.S. recovery boilers show variable loadings of ISP in the upper furnace, typically between 0.6-3 g/Nm{sup 3}, or 0.3-1.5% of BLS. The measurements show that the ISP mass size distribution increases with size from 5-100 {micro}m, implying that a substantial amount of ISP inertially deposits on steam tubes. ISP particles are depleted in potassium, chlorine, and sulfur relative to the fuel composition. Comprehensive boiler modeling demonstrates that ISP concentrations are substantially overpredicted when using a previously developed algorithm for ISP generation. Equilibrium calculations suggest that alkali carbonate decomposition occurs at intermediate heights in the furnace and may lead to partial destruction of ISP particles formed lower in the furnace. ISP deposition is predicted to occur in the superheater sections, at temperatures greater than 750 C, when the particles are at least partially molten.

More Details

Evaluation of alkali concentration in conditions relevant to oxygen/natural gas glass furnaces by laser-induced breakdown spectroscopy

MOLINA OCHOA, Alejandro N.; Shaddix, Christopher R.; Sickafoose, Shane S.

A number of industrial combustion systems are adopting oxygen-enhanced firing to improve heat transfer characteristics and reduce emissions. The exhaust gas from these systems is dominated by H2O and CO2 and therefore has substantially different gas properties from traditional combustion exhaust. In the past, laser-induced breakdown spectroscopy (LIBS) has been successfully used for the evaluation of alkali aerosol concentrations in air-based combustion systems. This paper presents results of LIBS measurements of alkali concentrations in a laboratory calibration setup and in an oxygen/natural gas container glass furnace. It shows how both gas conditions (composition and temperature) and the molecular form of the alkali species affect the LIBS signals. The paper proposes strategies for mitigating these effects in future applications of LIBS in oxygen-enhanced combustion systems.

More Details

Measurement of the dimensionless extinction coefficient of soot within laminar diffusion flames

Williams, T.C.; Shaddix, Christopher R.; Jensen, Kirk A.; Suo-Anttila, Jill M.

The dimensionless extinction coefficient (K{sub e}) of soot must be known to quantify laser extinction measurements of soot concentration and to predict optical attenuation through smoke clouds. Previous investigations have measured K{sub e} for post-flame soot emitted from laminar and turbulent diffusion flames and smoking laminar premixed flames. This paper presents the first measurements of soot K{sub e} from within laminar diffusion flames, using a small extractive probe to withdraw the soot from the flame. To measure K{sub e}, two laser sources (635 nm and 1310 nm) were coupled to a transmission cell, followed by gravimetric sampling. Coannular diffusion flames of methane, ethylene and nitrogen-diluted kerosene burning in air were studied, together with slot flames of methane and ethylene. K{sub e} was measured at the radial location of maximum soot volume fraction at several heights for each flame. Results for K{sub e} at both 635 nm and 1310 nm for ethylene and kerosene coannular flames were in the range of 9-10, consistent with the results from previous studies of post-flame soot. The ethylene slot flame and the methane flames have lower K{sub e} values, in some cases as low as 2.0. These lower values of K{sub e} are found to result from the contributions of (a) the condensation of PAH species during the sampling of soot, (b) the wavelength-dependent absorptivity of soot precursor particles, and, in the case of methane, (c) the negligible contribution of soot scattering to the extinction coefficient. RDG calculations of soot scattering, in combination with the measured K{sub e} values, imply that the soot refractive index is in the vicinity of 1.75-1.03i at 635 nm.

More Details

Effect of temperature and CO2 concentration on laser-induced breakdown spectroscopy measurements of alkali fume

Proposed for publication in Spectrocheimica Acta, Part B - Atomic Spectroscopy.

MOLINA OCHOA, Alejandro N.; Sickafoose, Shane S.; Shaddix, Christopher R.

Laser-induced breakdown spectroscopy (LIBS) was used in the evaluation of aerosol concentration in the exhaust of an oxygen/natural-gas glass furnace. Experiments showed that for a delay time of 10 {micro}s and a gate width of 50 {micro}s, the presence of CO{sub 2} and changes in gas temperature affect the intensity of both continuum emission and the Na D lines. The intensity increased for the neutral Ca and Mg lines in the presence of 21% CO{sub 2} when compared to 100% N{sub 2}, whereas the intensity of the Mg and Ca ionic lines decreased. An increase in temperature from 300 to 730 K produced an increase in both continuum emission and Na signal. These laboratory measurements were consistent with measurements in the glass furnace exhaust. Time-resolved analysis of the spark radiation suggested that differences in continuum radiation resulting from changes in bath composition are only apparent at long delay times. The changes in the intensity of ionic and neutral lines in the presence of CO{sub 2} are believed to result from higher free electron number density caused by lower ionization energies of species formed during the spark decay process in the presence of CO{sub 2}. For the high Na concentration observed in the glass furnace exhaust, self-absorption of the spark radiation occurred. Power law regression was used to fit laboratory Na LIBS calibration data for sodium loadings, gas temperatures, and a CO{sub 2} content representative of the furnace exhaust. Improvement of the LIBS measurement in this environment may be possible by evaluation of Na lines with weaker emission and through the use of shorter gate delay times.

More Details

Soot formation, transport, and radiation in unsteady diffusion flames : LDRD final report

Shaddix, Christopher R.; Williams, T.C.; Schefer, Robert W.; Jensen, Kirk A.; Suo-Anttila, Jill M.; Kearney, S.P.

Fires pose the dominant risk to the safety and security of nuclear weapons, nuclear transport containers, and DOE and DoD facilities. The thermal hazard from these fires primarily results from radiant emission from high-temperature flame soot. Therefore, it is necessary to understand the local transport and chemical phenomena that determine the distributions of soot concentration, optical properties, and temperature in order to develop and validate constitutive models for large-scale, high-fidelity fire simulations. This report summarizes the findings of a Laboratory Directed Research and Development (LDRD) project devoted to obtaining the critical experimental information needed to develop such constitutive models. A combination of laser diagnostics and extractive measurement techniques have been employed in both steady and pulsed laminar diffusion flames of methane, ethylene, and JP-8 surrogate burning in air. For methane and ethylene, both slot and coannular flame geometries were investigated, as well as normal and inverse diffusion flame geometries. For the JP-8 surrogate, coannular normal diffusion flames were investigated. Soot concentrations, polycyclic aromatic hydrocarbon (PAH) laser-induced fluorescence (LIF) signals, hydroxyl radical (OH) LIF, acetylene and water vapor concentrations, soot zone temperatures, and the velocity field were all successfully measured in both steady and unsteady versions of these various flames. In addition, measurements were made of the soot microstructure, soot dimensionless extinction coefficient (&), and the local radiant heat flux. Taken together, these measurements comprise a unique, extensive database for future development and validation of models of soot formation, transport, and radiation.

More Details

Effect of varied air flow on flame structure of laminar inverse diffusion flames

International Symposium on Combustion, Abstracts of Works-in-Progress Posters

Mikofski, M.A.; Blevins, Linda G.; Williams, T.C.; Shaddix, Christopher R.

The structure of laminar inverse diffusion flames (IDF) of methane and ethylene in air was studied using a cylindrical co-flowing burner. IDF were similar to normal diffusion flames, except that the relative positions of the fuel and oxidizer were reversed. Radiation from soot surrounding the IDF masked the reaction zone in visible images. As a result, flame heights determined from visible images were overestimated. The height of the reaction zone as indicated by OH LIF was a more relevant measure of height. The concentration and position of PAH and soot were observed using LIF and laser-induced incandescence (LII). PAH LIF and soot LII indicated that PAH and soot are present on the fuel side of the flame, and that soot is located closer to the reaction zone than PAH. Ethylene flames produced significantly higher PAH LIF and soot LII signals than methane flames, which was consistent with the sooting propensity of ethylene. The soot and PAH were present on the fuel side of the reaction zone, but the soot was closer to the reaction zone than the PAH. This is an abstract of a paper presented at the 30th International Symposium on combustion (Chicago, IL 7/25-30/2004).

More Details

LDRD report: Smoke effects on electrical equipment

Martin, Tina T.; Baynes, Edward E.; Nowlen, Steven P.; Brockmann, John E.; Gritzo, Louis A.; Shaddix, Christopher R.

Smoke is known to cause electrical equipment failure, but the likelihood of immediate failure during a fire is unknown. Traditional failure assessment techniques measure the density of ionic contaminants deposited on surfaces to determine the need for cleaning or replacement of electronic equipment exposed to smoke. Such techniques focus on long-term effects, such as corrosion, but do not address the immediate effects of the fire. This document reports the results of tests on the immediate effects of smoke on electronic equipment. Various circuits and components were exposed to smoke from different fields in a static smoke exposure chamber and were monitored throughout the exposure. Electrically, the loss of insulation resistance was the most important change caused by smoke. For direct current circuits, soot collected on high-voltage surfaces sometimes formed semi-conductive soot bridges that shorted the circuit. For high voltage alternating current circuits, the smoke also tended to increase the likelihood of arcing, but did not accumulate on the surfaces. Static random access memory chips failed for high levels of smoke, but hard disk drives did not. High humidity increased the conductive properties of the smoke. The conductivity does not increase linearly with smoke density as first proposed; however, it does increase with quantity. The data can be used to give a rough estimate of the amount of smoke that will cause failures in CMOS memory chips, dc and ac circuits. Comparisons of this data to other fire tests can be made through the optical and mass density measurements of the smoke.

More Details
139 Results
139 Results