Multi-Species Detection of Cas9 Presence and Activity on a Portable Centrifugal Microfluidic Platform
Abstract not provided.
Abstract not provided.
Biosensors and Bioelectronics
The challenges of diagnosing infectious disease, especially in the developing world, and the shortcomings of available instrumentation have exposed the need for portable, easy-to-use diagnostic tools capable of detecting the wide range of causative microbes while operating in low resource settings. We present a centrifugal microfluidic platform that combines ultrasensitive immunoassay and isothermal amplification-based screening for the orthogonal detection of both protein and nucleic acid targets at the point-of-care. A disposable disc with automatic aliquoting inlets is paired with a non-contact heating system and precise rotary control system to yield an easy-to-use, field-deployable platform with versatile screening capabilities. The detection of three enterotoxins (cholera toxin, Staphylococcal enterotoxin B, and Shiga-like toxin 1) and three enteric bacteria (C. jejuni, E. coli, and S. typhimurium) were performed independently and shown to be highly sensitive (limit of detection = 1.35–5.50 ng/mL for immunoassays and 1–30 cells for isothermal amplification), highly exclusive in the presence of non-specific targets, and capable of handling a complex sample matrix like stool. The full panel of toxins and bacteria were reliably detected simultaneously on a single disc at clinically relevant sample concentrations in less than an hour. The ability of our technology to detect multiple analyte types in parallel at the point-of-care can serve a variety of needs, from routine patient care to outbreak triage, in a variety of settings to reduce disease impact and expedite effective treatment.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2016 IEEE Healthcare Innovation Point-of-Care Technologies Conference, HI-POCT 2016
The threats of disease outbreaks and exposure to biothreat agents, both accidental and intentional, demand field-deployable technology capable of rapid, sensitive, and accurate diagnosis. In order to address these public health concerns, we present a portable centrifugal microfluidic platform and demonstrate sensitive detection protein antigens, host response antibodies, and nucleic acids down to single digit starting copies. The nucleic acid detection utilizes an isothermal amplification via loop-mediated isothermal amplification (LAMP). The platform, which is composed of a compact optical system for laser induced fluorescence (LIF) detection, a quiet brushless motor, and an efficient non-contact heater, offers an easy-to-use system capable of performing sensitive biodetection in a constrained-resource environment.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Biosensors
Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. This platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 μL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated in diarrheal and enteric diseases in less than 20 min.
Abstract not provided.