Perez, Christopher P.; Jog, Atharv J.; Kwon, Heungdong K.; Gall, Daniel G.; Asheghi, Mehdi A.; Kumar, Suhas K.; Park, Woosung P.; Goodson, Kenneth E.
High aspect ratio metal nanostructures are commonly found in a broad range of applications such as electronic compute structures and sensing. The self-heating and elevated temperatures in these structures, however, pose a significant bottleneck to both the reliability and clock frequencies of modern electronic devices. Any notable progress in energy efficiency and speed requires fundamental and tunable thermal transport mechanisms in nanostructured metals. Here, in this work, time-domain thermoreflectance is used to expose cross-plane quasi-ballistic transport in epitaxially grown metallic Ir(001) interposed between Al and MgO(001). Thermal conductivities ranges from roughly 65 (96 in-plane) to 119 (122 in-plane) W m-1 K-1 for 25.5–133.0 nm films, respectively. Further, low defects afforded by epitaxial growth are suspected to allow the observation of electron–phonon coupling effects in sub-20 nm metals with traditionally electron-mediated thermal transport. Via combined electro-thermal measurements and phenomenological modeling, the transition is revealed between three modes of cross-plane heat conduction across different thicknesses and an interplay among them: electron dominant, phonon dominant, and electron–phonon energy conversion dominant. The results substantiate unexplored modes of heat transport in nanostructured metals, the insights of which can be used to develop electro-thermal solutions for a host of modern microelectronic devices and sensing structures.
Thin-film organic materials are broadly used to study amorphous stabilization of active pharmaceuticals, control explosive detonation phenomena, and introduce insulation in novel thermal barriers. Their synthesis, however, introduces defects and thickness variations that warrant careful characterization of local thermophysical properties such as thermal conductivity and mass density. Here, wide bandwidth (200 Hz to 20 MHz) frequency–domain thermoreflectance (FDTR) is demonstrated to simultaneously extract the thermal conductivity and mass density of 1 μm physical vapor-deposited indomethacin films on Si and SiO2 substrates, as well as 10 and 100 μm films on Si. By assuming a bulk specific heat capacity, mass densities are determined with FDTR measurements of volumetric heat capacity and are in good agreement with the literature, as well as models based upon a dependence on porosity and the kinetic theory for phonons. Lastly, it is found that for broad-band FDTR measurements, insulating substrates provide improved fidelity for the extraction of thermal conductivity and volumetric heat capacity in organic thin films. Overall, this work demonstrates the potential for FDTR as a non-contact method to determine microscale mass density variations across the surface and thickness of organic thin films.
This project aimed to identify the performance-limiting mechanisms in mid- to far infrared (IR) sensors by probing photogenerated free carrier dynamics in model detector materials using scanning ultrafast electron microscopy (SUEM). SUEM is a recently developed method based on using ultrafast electron pulses in combination with optical excitations in a pump- probe configuration to examine charge dynamics with high spatial and temporal resolution and without the need for microfabrication. Five material systems were examined using SUEM in this project: polycrystalline lead zirconium titanate (a pyroelectric), polycrystalline vanadium dioxide (a bolometric material), GaAs (near IR), InAs (mid IR), and Si/SiO 2 system as a prototypical system for interface charge dynamics. The report provides detailed results for the Si/SiO 2 and the lead zirconium titanate systems.
Studies of size effects on thermal conductivity typically necessitate the fabrication of a comprehensive film thickness series. In this Letter, we demonstrate how material fabricated in a wedged geometry can enable similar, yet higher-throughput measurements to accelerate experimental analysis. Frequency domain thermoreflectance (FDTR) is used to simultaneously determine the thermal conductivity and thickness of a wedged silicon film for thicknesses between 100 nm and 17 μm by considering these features as fitting parameters in a thermal model. FDTR-deduced thicknesses are compared to values obtained from cross-sectional scanning electron microscopy, and corresponding thermal conductivity measurements are compared against several thickness-dependent analytical models based upon solutions to the Boltzmann transport equation. Our results demonstrate how the insight gained from a series of thin films can be obtained via fabrication of a single sample.