Publications

131 Results
Skip to search filters

Processing and properties of PSZT 95/5 ceramics with varying Ti and Nb substitution

International Journal of Ceramic Engineering & Science

Neuman, Eric W.; Anselmo, Nicholas A.; Meyer, Amber M.; Grier, Sophie G.; DiAntonio, Christopher D.; Rodriguez, Mark A.; Torres, Rose M.; Brane, Brian K.; Griego, J.J.M.

Niobium doped lead-tin-zirconate-titanate ceramics near the PZT 95/5 orthorhombic AFE – rhombohedral FE morphotropic phase boundary Pb1-0.5y(Zr0.865-xTixSn0.135)1-yNbyO3 were prepared according to a 22+1 factorial design with x = 0.05, 0.07 and y = 0.0155, 0.0195. The ceramics were prepared by a traditional solid-state synthesis route and sintered to near full density at 1250°C for 6 hours. All compositions were ~98% dense with no detectable secondary phases by XRD. The ceramics exhibited equiaxed grains with intergranular porosity and grain size was ~5 μm, decreasing with niobium substitution. Compositions exhibited remnant polarization values of ~32 μC/cm2, increasing with Ti substitution. Depolarization by the hydrostatic pressure induced FE-AFE phase transition was drastically affected by variation of the Ti and Nb substitution, increasing at a rate of 113 MPa / 1% Ti and 21 MPa / 1% Nb. Total depolarization output was insensitive to the change in Ti and Nb substitution, ~32.8 μC/cm2 for the PSZT ceramics. The R3c-R3m and R3m-Pm3m phase transition temperatures on heating ranged from 90 to 105°C and 183 to 191°C, respectively. Ti substitution stabilized the R3c and R3m phases to higher temperatures, while Nb substitution stabilized the Pm3m phase to lower temperatures. Thermal hysteresis of the phase transitions was also observed in the ceramics, with transition temperature on cooling being as much as 10°C lower.

More Details

Processing and properties of hafnium-doped tin-modified lead zirconate titanate 95/5 ceramics

International Journal of Ceramic Engineering & Science

Neuman, Eric W.; Anselmo, Nicholas A.; Meyer, Amber M.; DiAntonio, Christopher D.; Rodriguez, Mark A.; Torres, Rose M.; Brane, Brian K.; Griego, J.J.M.

Niobium (Nb)-doped lead-tin-zirconate-titanate (PSZT) ceramics near the lead-zirconate-titanate 95/5 orthorhombic AFE-rhombohedral FE morphotropic phase boundary (PSZT 13.5/81/5.5 -1.6Nb) were prepared with up to 10 mol.% of hafnium (Hf) substituted for zirconium. The ceramics were prepared by a traditional solid-state synthesis route and sintered to near full density at 1150°C for 6 h in sealed alumina crucibles with self-same material as the lead vapor source. All compositions were ~98% dense with no detectable secondary phases by X-ray diffraction. The grain size was ~3 μm for all compositions, consisting of equiaxed grains with intergranular porosity. The compositions exhibited remnant polarization values of ~32 μC/cm2. Depolarization by the hydrostatic pressure-induced FE-AFE phase transition occurred at 310 MPa for all compositions, resulting in a total depolarization output of 32.4 μC/cm2 for the PSZT ceramics. Evaluation of the R3c-R3m and R3m-Pm $\bar{3}$ m phase transition temperatures by impedance spectroscopy showed temperatures on heating ranging from 86 to 92°C and 186 to 182°C, respectively, for increasing nominal Hf content. Thermal hysteresis of the phase transitions was also observed in the ceramics, with the transition temperature on cooling being 1–4°C lower. The study demonstrated that the PSZT ceramics are relatively insensitive to variations in Hf content in the range of 0 to 10 mol.%.

More Details

Finite-element modeling for an explosively loaded ferroelectric generator

Niederhaus, John H.; Yang, Pin Y.; DiAntonio, Christopher D.; Vunni, George V.

A preliminary finite-element model has been developed using the ALEGRA-FE code for explosive- driven depoling of a PZT 95/5 ferroelectric generator. The ferroelectric material is characterized using hysteresis-loop and hydrostatic depoling tests. These characteristics are incorporated into ALEGRA-FE simulations that model the explosive drive mechanism and shock environment in the material leading to depoling, as well as the ferroelectric response and the behavior of a coupled circuit. The ferroelectric-to-antiferroelectric phase transition is captured, producing an output voltage pulse that matches experimental data to within 10% in rise time, and to within about 15% for the final voltage. Both experimental and modeled pulse magnitudes are less than the theoretical maximum output of the material. Observations from materials characterization suggest that unmodeled effects such as trapped charge in the stored FEG material may have influenced the experimentally observed output. ACKNOWLEDGEMENTS The authors are thankful to Mr. Peter Bartkowski and Mr. Paul Berning at ARL for initiating this work and providing critical insight along the way. Also, we thank Dr. Thomas Hughes and Dr. James Carleton at Sandia for important technical discussions and guidance. Finally, we wish to thank Tom Chavez at Sandia, who was heavily involved in conducting the laboratory materials characterization.

More Details

Born Qualified Grand Challenge LDRD Final Report

Roach, R.A.; Argibay, Nicolas A.; Allen, Kyle M.; Balch, Dorian K.; Beghini, Lauren L.; Bishop, Joseph E.; Boyce, Brad B.; Brown, Judith A.; Burchard, Ross L.; Chandross, M.; Cook, Adam W.; DiAntonio, Christopher D.; Dressler, Amber D.; Forrest, Eric C.; Ford, Kurtis R.; Ivanoff, Thomas I.; Jared, Bradley H.; Johnson, Kyle J.; Kammler, Daniel K.; Koepke, Joshua R.; Kustas, Andrew K.; Lavin, Judith M.; Leathe, Nicholas L.; Lester, Brian T.; Madison, Jonathan D.; Mani, Seethambal S.; Martinez, Mario J.; Moser, Daniel M.; Rodgers, Theron R.; Seidl, Daniel T.; Brown-Shaklee, Harlan J.; Stanford, Joshua S.; Stender, Michael S.; Sugar, Joshua D.; Swiler, Laura P.; Taylor, Samantha T.; Trembacki, Bradley T.

This SAND report fulfills the final report requirement for the Born Qualified Grand Challenge LDRD. Born Qualified was funded from FY16-FY18 with a total budget of ~$13M over the 3 years of funding. Overall 70+ staff, Post Docs, and students supported this project over its lifetime. The driver for Born Qualified was using Additive Manufacturing (AM) to change the qualification paradigm for low volume, high value, high consequence, complex parts that are common in high-risk industries such as ND, defense, energy, aerospace, and medical. AM offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this effort.

More Details

Phonon scattering mechanisms dictating the thermal conductivity of lead zirconate titanate (PbZr1-xTixO3) thin films across the compositional phase diagram

Journal of Applied Physics

Foley, Brian M.; Paisley, Elizabeth A.; DiAntonio, Christopher D.; Chavez, Tom C.; Blea-Kirby, Mia A.; Brennecka, Geoffrey L.; Gaskins, John T.; Ihlefeld, Jon I.; Hopkins, Patrick E.

This work represents a thorough investigation of the thermal conductivity (κ) in both thin film and bulk PbZr1-xTixO3 (PZT) across the compositional phase diagram. Given the technological importance of PZT as a superb piezoelectric and ferroelectric material in devices and systems impacting a wide array of industries, this research serves to fill the gap in knowledge regarding the thermal properties. The thermal conductivities of both thin film and bulk PZT are found to vary by a considerable margin as a function of composition x. Additionally, we observe a discontinuity in κ in the vicinity of the morphotropic phase boundary (MPB, x = 0.48) where there is a 20%-25% decrease in κ in our thin film data, similar to that found in literature data for bulk PZT. The comparison between bulk and thin film materials highlights the sensitivity of κ to size effects such as film thickness and grain size even in disordered alloy/solid-solution materials. A model for the thermal conductivity of PZT as a function of composition (κ (x)) is presented, which enables the application of the virtual crystal approximation for alloy-type material systems with very different crystals structures, resulting in differing temperature trends for κ. We show that in the case of crystalline solid-solutions where the thermal conductivity of one of the parent materials exhibits glass-like temperature trends the compositional dependence of thermal conductivity is relatively constant for most values of x. This is in stark contrast with the typical trends of thermal conductivity with x in alloys, where the thermal conductivity increases dramatically as the composition of the alloy or solid-solution approaches that of a pure parent materials (i.e., as x = 0 or 1).

More Details

Practical colloidal processing of multication ceramics

Journal of Ceramic Science and Technology

Bell, Nelson S.; Monson, Todd M.; DiAntonio, Christopher D.; Wu, Y.

The use of colloidal processing principles in the formation of ceramic materials is well appreciated for developing homogeneous material properties in sintered products, enabling novel forming techniques for porous ceramics or 3D printing, and controlling microstructure to enable optimized material properties. The solution processing of electronic ceramic materials often involves multiple cationic elements or dopants to affect microstructure and properties. Material stability must be considered through the steps of colloidal processing to optimize desired component properties. This review provides strategies for preventing material degradation in particle synthesis, milling processes, and dispersion, with case studies of consolidation using spark plasma sintering of these systems. The prevention of multication corrosion in colloidal dispersions can be achieved by utilizing conditions similar to the synthesis environment or by the development of surface passivation layers. The choice of dispersing surfactants can be related to these surface states, which are of special importance for nanoparticle systems. A survey of dispersant chemistries related to some commonsynthesis conditions is provided for perovskite systems as an example. These principles can be applied tomany colloidal systems related to electronic and optical applications.

More Details

Solid state consolidation nanocrystalline copper-tungsten using cold spray

Hall, Aaron C.; Sarobol, Pylin S.; Argibay, Nicolas A.; Clark, Blythe C.; DiAntonio, Christopher D.

It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

More Details

Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors

International Polymer Processing

Mondy, L.A.; Bieg, Lothar F.; Spangler, Scott W.; Stavig, Mark E.; Schroeder, John L.; Rao, Rekha R.; DiAntonio, Christopher D.

Multilayer coextrusion is applied to produce a tape containing layers of alternating electrical properties to demonstrate the potential for using coextrusion to manufacture capacitors. To obtain the desired properties, we develop two filled polymer systems, one for conductive layers and one for dielectric layers. We describe numerical models used to help determine the material and processing parameters that impact processing and layer stability. These models help quantify the critical ratios of densities and viscosities of the two layers to maintain stable layers, as well as the effect of increasing the flow rate of one of the two materials. The conducting polymer is based on polystyrene filled with a blend of low-melting-point eutectic metal and nickel particulate filler, as described by Mrozek et al. (2010). The appropriate concentrations of fillers are determined by balancing measured conductivity with processability in a twin screw extruder. Based on results of the numerical models and estimates of the viscosity of emulsions and suspensions, a dielectric layer composed of polystyrene filled with barium titanate is formulated. Despite the fact that the density of the dielectric filler is less than the metallic filler of the conductive phase, as well as rheological measurements that later showed that the dielectric formulation is not an ideal match to the viscosity of the conductive material, the two materials can be successfully coextruded if the flow rates of the two materials are not identical. A measurable capacitance of the layered structure is obtained.

More Details

Thermal characterization and properties of a copper-diamond composite

DiAntonio, Christopher D.; Chavez, Tom C.; Coker, Eric N.

The thermal properties of a commercial copper-diamond composite were measured from below -50°C to above 200°C. The results of thermal expansion, heat capacity, and thermal diffusivity were reported. These data were used to calculate the thermal conductivity of the composite as a function of temperature in the thickness direction. These results are compared with estimated values based on a simple mixing rule and the temperature dependence of these physical properties is represented by curve fitting equations. These fitting equations can be used for thermal modeling of practical devices/systems at their operation temperatures. The results of the mixing rule showed a consistent correlation between the amount of copper and diamond in the composite, based on density, thermal expansion, and heat capacity measurements. However, there was a disparity between measured and estimated thermal diffusivity and thermal conductivity. These discrepancies can be caused by many intrinsic material issues such as lattice defects and impurities, but the dominant factor is attributed to the large uncertainty of the interfacial thermal conductance between diamond and copper.

More Details

New composite separator pellet to increase power density and reduce size of thermal batteries

Mondy, L.A.; Evans, Lindsey E.; Roberts, Christine C.; Grillet, Anne M.; Soehnel, Melissa M.; Barringer, David A.; DiAntonio, Christopher D.; Chavez, Tom C.; Ingersoll, David I.; Hughes, Lindsey G.

We show that it is possible to manufacture strong macroporous ceramic films that can be backfilled with electrolyte to form rigid separator pellets suitable for use in thermal batteries. Several new ceramic manufacturing processes are developed to produce sintered magnesium oxide foams with connected porosities of over 80% by volume and with sufficient strength to withstand the battery manufacturing steps. The effects of processing parameters are quantified, and methods to imbibe electrolyte into the ceramic scaffold demonstrated. Preliminary single cell battery testing show that some of our first generation pellets exhibit longer voltage life with comparable resistance at the critical early times to that exhibited by a traditional pressed pellets. Although more development work is needed to optimize the processes to create these rigid separator pellets, the results indicate the potential of such ceramic separator pellets to be equal, if not superior to, current pressed pellets. Furthermore, they could be a replacement for critical material that is no longer available, as well as improving battery separator strength, decreasing production costs, and leading to shorter battery stacks for long-life batteries.

More Details

Creation and characterization of magnesium oxide macroporous ceramics

Materials Engineering and Sciences Division - Core Programming Topic at the 2011 AIChE Annual Meeting

Mondy, L.A.; DiAntonio, Christopher D.; Chavez, Tom C.; Hughes, Lindsey G.; Grillet, Anne M.; Roberts, Christine C.; Ingersoll, David I.

We examine several methods to create a sheet of magnesium oxide (MgO) macroporous ceramic material via tape casting. These methods include the approach pioneered by Akartuna et al.1 in which an oil/water emulsion is stabilized by surface-modified metal oxide particles at the droplet interfaces. Upon drying, a scaffold of the self-assembled particles is strong enough to be removed from the substrate material and sintered. We find that this method can be used with MgO particles surface modified by short amphiphilic molecules. This approach is compared with two more traditional methods to induce structure into a green ceramic: 1) creation of an MgO ceramic slip with added pore formers, and 2) sponge impregnation of a reticulated foam with the MgO slip. Green and sintered samples made using each method are hardness tested and results compared for several densities of the final ceramics. Optical and SEM images of the materials are shown.

More Details

Synthesis and electrical analysis of nano-crystalline barium titanate nanocomposites for use in high-energy density applications

DiAntonio, Christopher D.; Monson, Todd M.; Winter, Michael R.; Roesler, Alexander R.; Chavez, Tom C.; Yang, Pin Y.

Ceramic based nanocomposites have recently demonstrated the ability to provide enhanced permittivity, increased dielectric breakdown strength, and reduced electromechanical strain making them potential materials systems for high energy density applications. A systematic characterization and optimization of barium titanate and PLZT based nanoparticle composites employing a glass or polymer matrix to yield a high energy density component will be presented. This work will present the systematic characterization and optimization of barium titanate and lead lanthanum zirconate titanate nanoparticle based ceramics. The nanoparticles have been synthesized using solution and pH-based synthesis processing routes and employed to fabricate polycrystalline ceramic and nanocomposite based components. The dielectric/ferroelectric properties of these various components have been gauged by impedance analysis and electromechanical response and will be discussed.

More Details

Aqueous synthesis and electrical properties of nano-crystalline PLZT capacitors

DiAntonio, Christopher D.; Monson, Todd M.; Chavez, Tom C.; Stevens, Tyler E.; Roesler, Alexander R.; Huber, Dale L.

Devices with nano-crystalline microstructures have been shown to possess improved electrical properties. Further advantages include lower processing temperatures; however, device fabrication from nano-particles poses several challenges. This presentation describes a novel aqueous synthesis technique to produce large batch sizes with minimal waste. The precipitate is readily converted at less than 550 C to a phase pure, nano-crystalline Pb{sub 0.88} La{sub 0.12}(Zr{sub 0.70} Ti{sub 0.30}){sub 0.97} O{sub 3} powder. Complications and solutions to sample fabrication from nano-powders are discussed, including the use of glass sintering aids to improve density and further lower sintering temperatures. Finally, electrical properties are presented to demonstrate the potential benefits of nano-crystalline capacitors.

More Details

Dielectric and ferroelectric analysis of nanoparticle/nanocrystalline barium titanate and PLZT

DiAntonio, Christopher D.; Monson, Todd M.; Yang, Pin Y.; Winter, Michael R.; Roesler, Alexander R.; Chavez, Tom C.

Attractive for numerous technological applications, ferroelectronic oxides constitute an important class of multifunctional compounds. Intense experimental efforts have been made recently in synthesizing, processing and understanding ferroelectric nanostructures. This work will present the systematic characterization and optimization of barium titanate and lead lanthanum zirconate titanate nanoparticle based ceramics. The nanoparticles have been synthesized using several solution and pH-based synthesis processing routes and employed to fabricate polycrystalline ceramic and nanocomposite based components. The dielectric and ferroelectric properties of these various components have been gauged by impedance analysis and electromechanical response and will be discussed.

More Details

Nano-crystalline PLZT for dielectric applications

DiAntonio, Christopher D.; Monson, Todd M.; Roesler, Alexander R.; Huber, Dale L.; Chavez, Tom C.; Stevens, Tyler E.

Nano-materials have shown unique crystallite-dependent properties that present distinct advantages for dielectric applications. PLZT is an excellent dielectric material used in several applications and may benefit crystallite engineering; however complex systems such as PLZT require well-controlled synthesis techniques. An aqueous based synthesis route has been developed, using standard precursor chemicals and scalable techniques to produce large batch sizes. The synthesis will be briefly covered, followed by a more in-depth discussion of incorporating nanocrystalline PLZT into a working device. Initial electrical properties will be presented illustrating the potential benefits and associated difficulties of working with PLZT nano-materials.

More Details

Pressure-temperature phase diagram for a tin modified lead zirconate titanate ceramic

Yang, Pin Y.; Roesler, Alexander R.; Moore, Roger H.; DiAntonio, Christopher D.; Montgomery, Stephen M.

Structural phase transformations between ferroelectric (FE), antiferroelectric (AFE), and paraelectric (FE) phases are frequently observed in the zirconia-rich phase region on the lead zirconate-titanate (PZT) phase diagram. Since the free energy difference among these phases is small, phase transformation can be easily induced by temperature, pressure and electric field. These induced transformation characteristics have been used for many practical applications. This study focuses on a hydrostatic pressure induced FE-to-AFE phase transformation in a tin modified PZT ceramic (PSZT). The relative phase stability between FE and AFE phases is determined by the dielectric permittivity measurement as a function of temperature from -60 C to 125 C. A pressure-temperature phase diagram for the PSZT system will be presented.

More Details

Effect of dc bias and hydrostatic pressure on the ferroelectric-antiferroelectric phase transformation in a tin modified lead zirconate titanate ceramic

Grubbs, Robert K.; Roesler, Alexander R.; Moore, Roger H.; DiAntonio, Christopher D.; Montgomery, Stephen M.

Phase transformation between the ferroelectric (FE) and the antiferroelectric (AFE) phases in tin modified lead zirconate titanate (PSZT) ceramics can be influenced by pressure and electric field. Increasing the pressure has the tendency to favor the AFE phase while electric field favors the FE phase. In this study, these phase transformations are studied as functions of external pressure, temperature, and dc bias. The shifting of transformation temperature and the relative phase stability between FE and AFE with respect to these external parameters will be presented. Results will be compared to a pressure-induced depoling behavior (or FE-to-AFE phase transformation) for the PSZT ceramic. Fundamental issues relates to the relative phase stability will be discussed from the perspective of lattice dynamics theory.

More Details

Development of low-cost, compact, reliable, high energy density ceramic nanocomposite capacitors

Monson, Todd M.; DiAntonio, Christopher D.; Winter, Michael R.; Huber, Dale L.; Roesler, Alexander R.; Chavez, Tom C.; Stevens, Tyler E.; Vreeland, Erika C.

The ceramic nanocomposite capacitor goals are: (1) more than double energy density of ceramic capacitors (cutting size and weight by more than half); (2) potential cost reductino (factor of >4) due to decreased sintering temperature (allowing the use of lower cost electrode materials such as 70/30 Ag/Pd); and (3) lower sintering temperature will allow co-firing with other electrical components.

More Details

Barium titanate nanocomposite capacitor FY09 year end report

Stevens, Tyler E.; DiAntonio, Christopher D.; Winter, Michael R.; Chavez, Tom C.; Yang, Pin Y.; Roesler, Alexander R.

This late start RTBF project started the development of barium titanate (BTO)/glass nanocomposite capacitors for future and emerging energy storage applications. The long term goal of this work is to decrease the size, weight, and cost of ceramic capacitors while increasing their reliability. Ceramic-based nanocomposites have the potential to yield materials with enhanced permittivity, breakdown strength (BDS), and reduced strain, which can increase the energy density of capacitors and increase their shot life. Composites of BTO in glass will limit grain growth during device fabrication (preserving nanoparticle grain size and enhanced properties), resulting in devices with improved density, permittivity, BDS, and shot life. BTO will eliminate the issues associated with Pb toxicity and volatility as well as the variation in energy storage vs. temperature of PZT based devices. During the last six months of FY09 this work focused on developing syntheses for BTO nanoparticles and firing profiles for sintering BTO/glass composite capacitors.

More Details

Thermal properties of PZT95/5(1.8Nb) and PSZT ceramics

Yang, Pin Y.; DiAntonio, Christopher D.; Burns, George B.; Rae, David F.

Thermal properties of niobium-modified PZT95/5(1.8Nb) and PSZT ceramics used for the ferroelectric power supply have been studied from -100 C to 375 C. Within this temperature range, these materials exhibit ferroelectric-ferroelectric and ferroelectric-paraelectric phase transformations. The thermal expansion coefficient, heat capacity, and thermal diffusivity of different phases were measured. Thermal conductivity and Grueneisen constant were calculated at several selected temperatures between -60 C and 100 C. Results show that thermal properties of these two solid solutions are very similar. Phase transformations in these ceramics possess first order transformation characteristics including thermal hysteresis, transformational strain, and enthalpy change. The thermal strain in the high temperature rhombohedral phase region is extremely anisotropic. The heat capacity for both materials approaches to 3R (or 5.938 cal/(g-mole*K)) near room temperature. The thermal diffusivity and the thermal conductivity are quite low in comparison to common oxide ceramics, and are comparable to amorphous silicate glass. Furthermore, the thermal conductivity of these materials between -60 C and 100 C becomes independent of temperature and is sensitive to the structural phase transformation. These phenomena suggest that the phonon mean free path governing the thermal conductivity in this temperature range is limited by the lattice dimensions, which is in good agreement with calculated values. Effects of small compositional changes and density/porosity variations in these ceramics on their thermal properties are also discussed. The implications of these transformation characteristics and unusual thermal properties are important in guiding processing and handling procedures for these materials.

More Details
131 Results
131 Results