Publications

18 Results
Skip to search filters

A standardized approach to PV system performance model validation

Cameron, Christopher P.

PV performance models are used to predict how much energy a PV system will produce at a given location and subject to prescribed weather conditions. These models are commonly used by project developers to choose between module technologies and array designs (e.g., fixed tilt vs. tracking) for a given site or to choose between different geographic locations, and are used by the financial community to establish project viability. Available models can differ significantly in their underlying mathematical formulations and assumptions and in the options available to the analyst for setting up a simulation. Some models lack complete documentation and transparency, which can result in confusion on how to properly set up, run, and document a simulation. Furthermore, the quality and associated uncertainty of the available data upon which these models rely (e.g., irradiance, module parameters, etc.) is often quite variable and frequently undefined. For these reasons, many project developers and other industry users of these simulation tools have expressed concerns related to the confidence they place in PV performance model results. To address this problem, we propose a standardized method for the validation of PV system-level performance models and a set of guidelines for setting up these models and reporting results. This paper describes the basic elements for a standardized model validation process adapted especially for PV performance models, suggests a framework to implement the process, and presents an example of its application to a number of available PV performance models.

More Details

Peer review presentation on systems performance modeling and solar advisor support

Cameron, Christopher P.

Accurate Performance Models are Critical to Project Development and Technology Evaluation - Accuracy and Uncertainty of Commonly-Used Models Unknown and Models Disagree. A Model Evaluation Process Has Been Developed with Industry, and High-Quality Weather and System Performance Data Sets Have Been Collected: (1) Evaluation is Underway using Residual Analysis of Hourly and Sub-Hourly Data for Clear and Diffuse Climates to Evaluate and Improve Models; and (2) Initial Results Have Been or Will Soon Be Presented at Key Conferences. Evaluation of Widely-Used Module, Inverter, and Irradiance Models, Including Those in SAM, PVWatts, and PVSyst, Will Be Completed This Year. Stochastic Modeling Has Been Performed to Support Reliability Task and Will Add Value to Parametric Analysis. An Industry Workshop will be Held This Fall To Review Results, Set Priorities. Support and Analysis has been Provided for TPP's, SETP, and PV Community. Goals for Future Work Include: (1) Improving Understanding of and Validating System Derate Factors; and (2) Developing a Dynamic Electrical Model of Arrays with Shaded or Mismatched Modules to Support Transient Analysis of Large Fields.

More Details

A discussion on life-cycle costs of residential photovoltaic systems

Thomas, Michael G.; Cameron, Christopher P.

This paper discusses the characteristics and needed improvements/enhancements required for the expansion of the grid-tied residential power systems market. The purpose of the paper is to help establish a common understanding, between the technical community and the customers of the technology, of value and costs and what is required in the longer term for reaching the full potential of this application.

More Details
18 Results
18 Results