The differential absorption hard X-ray (DAHX) spectrometer is a diagnostic developed to measure time-resolved radiation between 60 keV and 2 MeV at the Z Facility. It consists of an array of seven Si PIN diodes in a tungsten housing that provides collimation and coarse spectral resolution through differential filters. DAHX is a revitalization of the hard X-ray spectrometer that was fielded on Z prior to refurbishment in 2006. DAHX has been tailored to the present radiation environment in Z to provide information on the power, spectral shape, and time profile of the hard emission by plasma radiation sources driven by the Z machine.
A new collimated filtered thermoluminescent dosimeter (TLD) array has been developed at the Z facility to characterize warm x-rays (hν > 10 keV) produced by Z pinch radiation sources. This array includes a Kapton debris shield assembly to protect the TLDs from the source debris, a collimator array to limit the field of view of the TLDs to the source region, a filter wheel containing filters of aluminum, copper and tungsten up to 3 mm thick to independently filter each TLD, and a hermetically sealed cassette containing the TLDs as well as tungsten shielding on the sides and back of the array to minimize scattered radiation reaching the TLDs. Here experimental results from a krypton gas puff and silver wire array shot are analyzed using two different functional forms of the energy spectrum to demonstrate the ability of this diagnostic to consistently extend the upper end of the x-ray spectrum characterization from ~50 keV to >1 MeV.
Double-shell Ar gas puff implosions driven by 16.5 ± 0.5 MA on the Z generator at Sandia National Laboratories are very effective emitters of Ar K-shell radiation (photon energy >3 keV), producing yields of 330 ± 9% kJ [B. Jones et al., Phys. Plasmas 22, 020706 (2015)]. Previous simulations and experiments have reported dramatic increases in K-shell yields when adding an on-axis jet to double shell gas puffs for some configurations. We report on a series of experiments on Z testing Ar gas puff configurations with and without an on-axis jet guided by 3D magneto-hydrodynamic (MHD) simulations. Adding an on-axis jet was found to significantly improve the performance of some, but not all, configurations. The maximum observed K-shell yield of 375 ± 9% kJ was produced with a configuration that rapidly imploded onto an on-axis jet. A dramatic difference was observed in the plasma conditions at stagnation when a jet was used, producing a narrower stagnation column in experiments with a higher density but relatively lower electron temperature. The MHD simulations accurately reproduce the experimental measurements. The conversion efficiency for electrical energy delivered to the load to K-shell x-rays is estimated to be ∼12.5% for the best-performing configuration, similar to the best results from experiments at smaller facilities.
A new high photon energy (hν > 15 keV) time-integrated pinhole camera (TIPC) has been developed as a diagnostic instrument at the Z facility. This camera employs five pinholes in a linear array for recording five images at once onto an image plate detector. Each pinhole may be independently filtered to yield five different spectral responses. The pinhole array is fabricated from a 1-cm thick tungsten block and is available with either straight pinholes or conical pinholes. Each pinhole within the array block is 250 μm in diameter. The five pinholes are splayed with respect to each other such that they point to the same location in space, and hence present the same view of the radiation source at the Z facility. The fielding distance from the radiation source is 66 cm and the nominal image magnification is 0.374. Initial experimental results from TIPC are shown to illustrate the performance of the camera.
By varying current-loss circuit parameters, the Mach2-tabular collisional radiative equilibrium 2-D radiation magnetohydrodynamic model was tuned to reproduce the radiative and electrical properties of three recent argon gas-puff experiments (same initial conditions) performed on the Z machine at Sandia National Laboratories. The model indicates that there were current losses occurring near or within the diode region of the Z machine during the stagnation phase of the implosion. The 'good' simulation reproduces the experimental K-shell powers, K-shell yields, total powers, percentage of emission radiated in α lines, size of the K-shell emission region, and the average electron temperature near the time-of-peak K-shell power. The calculated atomic populations, ion temperatures, and radial velocities are used as input to a detailed multifrequency ray-trace radiation transport model that includes the Doppler effect. This model is employed to construct time-, space-, and energy-resolved synthetic spectra. The role the Doppler effect likely plays in the experiments is demonstrated by comparing synthetic spectra generated with and without this effect.
In developing stainless-steel (SS) and copper wire-array X-ray sources on the Z machine, we consider the optimization of K-shell yield as a function of load height. Theory, numerical modeling, and experimental data suggest that an optimum exists corresponding to a tradeoff between the increase in radiating mass and the decrease in coupled current with increasing pinch height. A typical load height of 20 mm used on many previous Z wire-array X-ray sources is found to be near optimal for K-shell yield production in SS and copper implosions. Electrical data, pinhole imaging, and spectroscopy are used to study plasma conditions in wire-array z pinches corresponding to the variation in K-shell power and yield per unit length as the pinch height is changed from 12 to 24 mm.
Stafford, Austin; Safronova, Alla S.; Kantsyrev, Victor L.; Weller, Michael E.; Shrestha, Ishor; Shlyaptseva, Veronica V.; Coverdale, Christine A.; Chuvatin, Alexander S.
Precursor plasmas from low wire number cylindrical wire arrays (CWAs) were previously shown to radiate at temperatures >300 eV for Ni-60 (94% Cu and 6% Ni) wires in experiments on the 1-MA Zebra generator. Continued research into precursor plasmas has studied additional midatomic-number materials including Cu and Alumel (95% Ni, 2% Al, 2% Mn, and 1% Si) to determine if the >300 eV temperatures are common for midatomic-number materials. In addition, current scaling effects were observed by performing CWA precursor experiments at an increased current of 1.5 MA using a load current multiplier. The results show an increase in a linear radiation yield of $\sim 50$ % (16 versus 10 kJ/cm) for the experiments at increased current. However, plasma conditions inferred through the modeling of X-ray time-gated spectra are very similar for the precursor plasma in both current conditions.
Argon gas puffs have produced 330kJ ± 9% of x-ray radiation above 3keV photon energy in fast z-pinch implosions, with remarkably reproducible K-shell spectra and power pulses. This reproducibility in x-ray production is particularly significant in light of the variations in instability evolution observed between experiments. Soft x-ray power measurements and K-shell line ratios from a time-resolved spectrum at peak x-ray power suggest that plasma gradients in these high-mass pinches may limit the K-shell radiating mass, K-shell power, and K-shell yield from high-current gas puffs.
Radiation magnetohydrodynamic r-z simulations are performed of recent Ar shots on the refurbished Z generator to examine the effective ion temperature as determined from the observed line width of the He-γ line. While many global radiation properties can be matched to experimental results, the Doppler shifts due to velocity gradients at stagnation cannot reproduce the large experimentally determined width corresponding to an effective ion temperature of 50 keV. Ion viscous heating or magnetic bubbles are considered, but understanding the width remains an unsolved challenge.
Experiments on the UNR Zebra generator with Load Current Multiplier (LCM) allow for implosions of larger sized wire array loads than at standard current of 1 MA. Advantages of larger sized planar wire array implosions include enhanced energy coupling to plasmas, better diagnostic access to observable plasma regions, and more complex geometries of the wire loads. The experiments with larger sized wire arrays were performed on 1.5 MA Zebra with LCM (the anode-cathode gap was 1 cm, which is half the gap used in the standard mode). In particular, larger sized multi-planar wire arrays had two outer wire planes from mid-atomic-number wires to create a global magnetic field (gmf) and plasma flow between them. A modified central plane with a few Al wires at the edges was put in the middle between outer planes to influence gmf and to create Al plasma flow in the perpendicular direction (to the outer arrays plasma flow). Such modified plane has different number of empty slots: it was increased from 6 up to 10, hence increasing the gap inside the middle plane from 4.9 to 7.7 mm, respectively. Such load configuration allows for more independent study of the flows of L-shell mid-atomic-number plasma (between the outer planes) and K-shell Al plasma (which first fills the gap between the edge wires along the middle plane) and their radiation in space and time. We demonstrate that such configuration produces higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions and how the load geometry (size of the gap in the middle plane) influences K-shell Al radiation. In particular, K-shell Al radiation was delayed compared to L-shell mid-atomic-number radiation when the gap in the middle plane was large enough (when the number of empty slots was increased up to ten).