Micro-fabricated ion traps for Quantum Information Processing; Highlights and lessons learned
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb+ hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ion traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.
This report summarizes the first year’s effort on the Enceladus project, under which Sandia was asked to evaluate the potential advantages of adiabatic quantum computing for analyzing large data sets in the near future, 5-to-10 years from now. We were not specifically evaluating the machine being sold by D-Wave Systems, Inc; we were asked to anticipate what future adiabatic quantum computers might be able to achieve. While realizing that the greatest potential anticipated from quantum computation is still far into the future, a special purpose quantum computing capability, Adiabatic Quantum Optimization (AQO), is under active development and is maturing relatively rapidly; indeed, D-Wave Systems Inc. already offers an AQO device based on superconducting flux qubits. The AQO architecture solves a particular class of problem, namely unconstrained quadratic Boolean optimization. Problems in this class include many interesting and important instances. Because of this, further investigation is warranted into the range of applicability of this class of problem for addressing challenges of analyzing big data sets and the effectiveness of AQO devices to perform specific analyses on big data. Further, it is of interest to also consider the potential effectiveness of anticipated special purpose adiabatic quantum computers (AQCs), in general, for accelerating the analysis of big data sets. The objective of the present investigation is an evaluation of the potential of AQC to benefit analysis of big data problems in the next five to ten years, with our main focus being on AQO because of its relative maturity. We are not specifically assessing the efficacy of the D-Wave computing systems, though we do hope to perform some experimental calculations on that device in the sequel to this project, at least to provide some data to compare with our theoretical estimates.
Physical Review Letters or Physical Review A
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
New Journal of Physics
Abstract not provided.
We will present results of the design, operation, and performance of surface ion micro-traps fabricated at Sandia. Recent progress in the testing of the micro-traps will be highlighted, including successful motional control of ions and the validation of simulations with experiments.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Microelectromechanical Systems
A soft-landing actuation waveform was designed to reduce the bounce of a single-pole single-throw (SPST) ohmic radio frequency (RF) microelectromechanical systems (MEMS) switch during actuation. The waveform consisted of an actuation voltage pulse, a coast time, and a hold voltage. The actuation voltage pulse had a short duration relative to the transition time of the switch and imparted the kinetic energy necessary to close the switch. After the actuation pulse was stopped, damping and restoring forces slowed the switch to near-zero velocity as it approached the closed position. This is referred to as the coast time. The hold voltage was applied upon reaching closure to keep the switch from opening. An ideal waveform would close the switch with near zero impact velocity. The switch dynamics resulting from an ideal waveform were modeled using finite element methods and measured using laser Doppler vibrometry. The ideal waveform closed the switch with an impact velocity of less than 3 cm/s without rebound. Variations in the soft-landing waveform closed the switch with impact velocities of 12.5 cm/s with rebound amplitudes ranging from 75 to 150 nm compared to impact velocities of 22.5 cm/s and rebound amplitudes of 150 to 200 nm for a step waveform. The ideal waveform closed the switch faster than a simple step voltage actuation because there was no rebound and it reduced the impact force imparted on the contacting surfaces upon closure. © 2006 IEEE.
In this late-start Tier I Seniors Council sponsored LDRD, we have designed, simulated, microfabricated, packaged, and tested ion traps to extend the current quantum simulation capabilities of macro-ion traps to tens of ions in one and two dimensions in monolithically microfabricated micrometer-scaled MEMS-based ion traps. Such traps are being microfabricated and packaged at Sandia's MESA facility in a unique tungsten MEMS process that has already made arrays of millions of micron-sized cylindrical ion traps for mass spectroscopy applications. We define and discuss the motivation for quantum simulation using the trapping of ions, show the results of efforts in designing, simulating, and microfabricating W based MEMS ion traps at Sandia's MESA facility, and describe is some detail our development of a custom based ion trap chip packaging technology that enables the implementation of these devices in quantum physics experiments.
Abstract not provided.
Abstract not provided.
GaN-based microwave power amplifiers have been identified as critical components in Sandia's next generation micro-Synthetic-Aperture-Radar (SAR) operating at X-band and Ku-band (10-18 GHz). To miniaturize SAR, GaN-based amplifiers are necessary to replace bulky traveling wave tubes. Specifically, for micro-SAR development, highly reliable GaN high electron mobility transistors (HEMTs), which have delivered a factor of 10 times improvement in power performance compared to GaAs, need to be developed. Despite the great promise of GaN HEMTs, problems associated with nitride materials growth currently limit gain, linearity, power-added-efficiency, reproducibility, and reliability. These material quality issues are primarily due to heteroepitaxial growth of GaN on lattice mismatched substrates. Because SiC provides the best lattice match and thermal conductivity, SiC is currently the substrate of choice for GaN-based microwave amplifiers. Obviously for GaN-based HEMTs to fully realize their tremendous promise, several challenges related to GaN heteroepitaxy on SiC must be solved. For this LDRD, we conducted a concerted effort to resolve materials issues through in-depth research on GaN/AlGaN growth on SiC. Repeatable growth processes were developed which enabled basic studies of these device layers as well as full fabrication of microwave amplifiers. Detailed studies of the GaN and AlGaN growth of SiC were conducted and techniques to measure the structural and electrical properties of the layers were developed. Problems that limit device performance were investigated, including electron traps, dislocations, the quality of semi-insulating GaN, the GaN/AlGaN interface roughness, and surface pinning of the AlGaN gate. Surface charge was reduced by developing silicon nitride passivation. Constant feedback between material properties, physical understanding, and device performance enabled rapid progress which eventually led to the successful fabrication of state of the art HEMT transistors and amplifiers.
Proposed for publication in the Journal of Microelectromechanical Systems.
Abstract not provided.
Proposed for publication in Applied Physics Letters.
We report micro-Raman studies of self-heating in an AlGaN/GaN heterostructure field-effect transistor using below (visible 488.0 nm) and near (UV 363.8 nm) GaN band-gap excitation. The shallow penetration depth of the UV light allows us to measure temperature rise ({Delta}T) in the two-dimensional electron gas (2DEG) region of the device between drain and source. Visible light gives the average {Delta}T in the GaN layer, and that of the SiC substrate, at the same lateral position. Combined, we depth profile the self-heating. Measured {Delta}T in the 2DEG is consistently over twice the average GaN-layer value. Electrical and thermal transport properties are simulated. We identify a hotspot, located at the gate edge in the 2DEG, as the prevailing factor in the self-heating.
Abstract not provided.
In a superposition of quantum states, a bit can be in both the states '0' and '1' at the same time. This feature of the quantum bit or qubit has no parallel in classical systems. Currently, quantum computers consisting of 4 to 7 qubits in a 'quantum computing register' have been built. Innovative algorithms suited to quantum computing are now beginning to emerge, applicable to sorting and cryptanalysis, and other applications. A framework for overcoming slightly inaccurate quantum gate interactions and for causing quantum states to survive interactions with surrounding environment is emerging, called quantum error correction. Thus there is the potential for rapid advances in this field. Although quantum information processing can be applied to secure communication links (quantum cryptography) and to crack conventional cryptosystems, the first few computing applications will likely involve a 'quantum computing accelerator' similar to a 'floating point arithmetic accelerator' interfaced to a conventional Von Neumann computer architecture. This research is to develop a roadmap for applying Sandia's capabilities to the solution of some of the problems associated with maintaining quantum information, and with getting data into and out of such a 'quantum computing accelerator'. We propose to focus this work on 'quantum I/O technologies' by applying quantum optics on semiconductor nanostructures to leverage Sandia's expertise in semiconductor microelectronic/photonic fabrication techniques, as well as its expertise in information theory, processing, and algorithms. The work will be guided by understanding of practical requirements of computing and communication architectures. This effort will incorporate ongoing collaboration between 9000, 6000 and 1000 and between junior and senior personnel. Follow-on work to fabricate and evaluate appropriate experimental nano/microstructures will be proposed as a result of this work.
Many MEMS-based components require optical monitoring techniques using optoelectronic devices for converting mechanical position information into useful electronic signals. While the constituent piece-parts of such hybrid opto-MEMS components can be separately optimized, the resulting component performance, size, ruggedness and cost are substantially compromised due to assembly and packaging limitations. GaAs MOEMS offers the possibility of monolithically integrating high-performance optoelectronics with simple mechanical structures built in very low-stress epitaxial layers with a resulting component performance determined only by GaAs microfabrication technology limitations. GaAs MOEMS implicitly integrates the capability for radiation-hardened optical communications into the MEMS sensor or actuator component, a vital step towards rugged integrated autonomous microsystems that sense, act, and communicate. This project establishes a new foundational technology that monolithically combines GaAs optoelectronics with simple mechanics. Critical process issues addressed include selectivity, electrochemical characteristics, and anisotropy of the release chemistry, and post-release drying and coating processes. Several types of devices incorporating this novel technology are demonstrated.