Publications

2 Results
Skip to search filters

Inspecta Annual Technical Report

Smartt, Heidi A.; Coram, Jamie L.; Dorawa, Sydney D.; Hannasch, David A.; Honnold, Philip H.; Kakish, Zahi K.; Pickett, Chris A.; Shoman, Nathan; Spence, Katherine P.

Sandia National Laboratories (SNL) is designing and developing an Artificial Intelligence (AI)-enabled smart digital assistant (SDA), Inspecta (International Nuclear Safeguards Personal Examination and Containment Tracking Assistant). The goal is to provide inspectors an in-field digital assistant that can perform tasks identified as tedious, challenging, or prone to human error. During 2021, we defined the requirements for Inspecta based on reviews of International Atomic Energy Agency (IAEA) publications and interviews with former IAEA inspectors. We then mapped the requirements to current commercial or open-source technical capabilities to provide a development path for an initial Inspecta prototype while highlighting potential research and development tasks. We selected a highimpact inspection task that could be performed by an early Inspecta prototype and are developing the initial architecture, including hardware platform. This paper describes the methodology for selecting an initial task scenario, the first set of Inspecta skills needed to assist with that task scenario and finally the design and development of Inspecta’s architecture and platform.

More Details

Tamper-Indicating Enclosures with Visually Obvious Tamper Response (Final Project Report)

Smartt, Heidi A.; Benin, Annabelle L.; Corbin, William C.; Feng, Patrick L.; Jones, Amanda; Myllenbeck, Nicholas M.; Livesay, Jason D.; Pickett, Chris A.

Sandia National Laboratories is developing a new method for detecting penetration of tamper - indicating enclosures (TIEs). This method incorporates the use of "bleeding" materials (analogous to visually obvious, colorful bruised skin that doesn't heal) into the design of TIEs. As designed, it will allow inspectors to use simple visual observation to detect attempts to penetrate the external surfaces of a TIE, without providing adversaries the ability to repair damage. A material of this type can enhance tamper indication of current TIEs used to support treaty verification regimes. Current TIE inspections are time - consuming and rely on subjective visual assessment by an inspector, equipment such as eddy current or camera devices, or involve approaches that may be limited due to application environment. The complexities and requirements that volumetric sealing methods (or TIEs) must address are: (1) enclosures that are non - standard in size/shape; (2) enclosures that may be inspectorate - or facility - owned; (3) finding tamper attempts that are difficult and time consuming for an inspector to locate; (4) enclosures that are reliable and durable enough to survive the conditions that exist in the operating environment (including facility handling); and (5) methods that prevent adversaries from repairing penetrations. Early project R&D [1] focused on encapsulated transition metals. Due to the challenges associated with the transition metal - based approach, a mitigation approach was investigated resulting in two separate research paths — one that involves fabricating custom TIE molds that meet the specific (size and shape) needs of safeguards equipment a nd one that can be deployed as a sprayed on or painted coating to an existing TIE or surface. The "custom mold" approach is based on creating thin layers of materials that , when penetrated, expose an inner material to O2 which causes an irreversible color change. The "in-situ coating" approach is based on applying a sensor solution containing color changing microcapsules that bleed when the microcapsule is ruptured. The anticipated benefits of this work are passive, flexible, scalable, robust , cost-effective TIEs with visually obvious responses to tamper attempts. This provides more efficient and effective monitoring , as inspectors will require little or no additional equipment and will be able to detect tamper without extensive time - consuming visual examination. Applications include custom TIEs (cabinets , equipment enclosures or seal bodies ), or spray-coating/painting onto facility-owned items, walls or structures, or circuit boards. The paper describes research and testing completed to-date on the method and integration of select system components.

More Details
2 Results
2 Results