Hydrogen is an important resource for many different industries throughout the world, including refining, manufacturing, and as a direct energy source. Hydrogen production, through methods such as steam methane reforming, has been developed over several decades. There is a large global demand for hydrogen from these industries and safe production and distribution are paramount for hydrogen systems. Codes and standards have been developed to reduce the risk associated with hydrogen accidents to the public. These codes and standards are similar to those in other industries in which there is inherent risk to the public, such as gasoline and natural gas production and distribution. Although there will always be a risk to the public in these types of fuels, the codes and standards are developed to reduce the likelihood of an accident occurring and reduce the severity of impact, should one occur. This report reviews the current state of hydrogen in the United States and outlines the codes and standards that ensure safe operation of hydrogen systems. The total hydrogen demand and use in different industries is identified. Additionally, the current landscape of hydrogen production and fueling stations in the United States is outlined. The safety of hydrogen systems is discussed through an overview of the purpose, methods, and content included in codes and standards. As outlined in this safety overview, the risk to the public in operation of hydrogen generation facilities and fueling stations is reduced through implementation of appropriate measures. Codes, such as NFPA 2, ensure that the risk associated with a hydrogen system is no greater than the risk presented by gasoline refueling stations.
LaFleur, Chris B.; Taylor, Gabriel T.; Putorti, Anthony P.; Salley, Mark H.
This report documents an experimental program designed to investigate High Energy Arcing Fault (HEAF) phenomena for low-voltage metal enclosed switchgear containing aluminum conductors. This report covers full-scale laboratory experiments using representative nuclear power plant (NPP) three-phase electrical equipment. Electrical, thermal, and pressure data were recorded for each experiment and documented in this report. This report covers experiments performed on two low-voltage switchgear units with each unit consisting of two vertical sections. The data collected supports characterization of the low-voltage HEAF hazard and these results will be used to support potential improvements in fire probabilistic risk assessment (PRA) methods. The experiments were performed at KEMA Labs located in Chalfont, Pennsylvania. The experimental design, setup, and execution were completed by staff from the NRC, the National Institute of Standards and Technology (NIST), Sandia National Laboratories (SNL) and KEMA. In addition, representatives from the Electric Power Research Institute (EPRI) observed some of the experimental setup and execution. The HEAF experiments were performed between August 26 and Augsut 29, 2019 on nearidentical Westinghouse Type DS low-voltage metal-enclosed indoor switchgear. The threephase arcing fault was initiated on the aluminum main bus or in select cases on the copper bus stabs near the breaker. These experiments used either nominal 480 volts AC or 600 volts AC. Durations of the experiments ranged from approximately 0.4 s to 8.3 s with fault currents ranging from approximately 9.2 kA to 19.3 kA. Real-time electrical operating conditions, including voltage, current and frequency, were measured during the experiments. Heat fluxes and incident energies were measured with plate thermometers, radiometers, and slug calorimeters at various locations around the electrical enclosures. Environmental measurements of breakdown, conductivity and electromagnetics were also taken. The experiments were documented with normal and high-speed videography, infrared imaging and photography. The results, while limited, indicated the difficulty in maintaining and sustaining low-voltage arcs on aluminum components of sufficient duration and at a single point as observed operating experience.
This report documents an experimental program designed to investigate High Energy Arcing Fault (HEAF) phenomena. The experiments focus on providing data to better characterize the arc to improve the prediction of arc energy emitted during a HEAF event. An open box experiment allow for direct observation of the arc, which allows diagnostic instrumentation to record the phenomenological data needed for better characterization of the arc energy source term. The data collected supports characterization of the arc and arc jet, enclosure breach, material loss, and electrical properties. These results will be used to better characterizing the hazard for improvements in fire probabilistic risk assessment (PRA) realism. The experiments were performed at KEMA Labs located in Chalfont, Pennsylvania. The experimental design, setup, and execution were completed by staff from the NRC, the National Institute of Standards and Technology (NIST), Sandia National Laboratories (SNL) and KEMA Labs. In addition, representatives from the Electric Power Research Institute (EPRI) observed some of the experimental setup and execution. The HEAF experiments were performed between August 22, 2020 and September 18, 2020 on near-identical 51 cm (20 in) cube metal boxes suspended from a Unistrut support structure. The three-phase arcing fault was initiated at the ends of the conductors oriented vertically and located at the center of the box. Either aluminum or copper conductors were used for the conductors. The low-voltage experiments used 1 000 volts AC, while the medium-voltage experiments used 6 900 volts AC consistent with other recently completed experiments. Durations of the experiment ranged from 1 s to 5 s with fault currents ranging from 1 kA to 30 kA. Real-time electrical operating conditions, including voltage, current and frequency, were measured during the experiments. Heat fluxes and incident energies were measured with plate thermometers, radiometers, and slug calorimeters at various locations around the electrical enclosures. The experiments were documented with normal and high-speed videography, infrared imaging and photography.
This white paper describes the work performed by Sandia National Laboratories in the New Mexico Small Business Agreement with BayoTech. BayoTech is a hydrogen generation and distribution company that is located in Albuquerque, NM. Their goal is to distribute hydrogen via their hydrogen systems which utilize the core design that was developed by Sandia. However, because the hydrogen economy is in its nascency, the safety and operation of the generating systems require independent validation. Additionally, in their pursuit of permitting at various locations around the nation, they require fire protection engineering support in discussions with local fire marshals and neighboring industrial entities. Sandia National Laboratories has subject matter expertise in hydrogen risk modeling of consequence (overpressure and dispersion) as well as fire protection engineering. Throughout this project, Sandia has worked with BayoTech to provide our expertise in these subject areas to facilitate the market entry of their hydrogen generation project to address the dire need for decarbonization due to climate change. The general approach of the support by Sandia is outlined in the main body, while the location specific evaluation for the Port of Stockton is contained in Appendix A.
In order to establish a zone of influence (ZOI) due to a high energy arcing fault (HEAF) environment, the fragility of the targets must be determined. The high heat flux/short duration exposure of a HEAF is considerably different than that of a traditional hydrocarbon fire, which previous research has addressed. The previous failure metrics (e.g., internal jacket temperature of a cable exposed to a fire) were based on low heat flux/long duration exposures. Because of this, evaluation of different physics and failure modes was considered to evaluate the fragility of cables exposed to a HEAF. Tests on cable targets were performed at high heat flux/short duration exposures to gain insight on the relevant physics and failure modes. These tests yielded data on several relevant failure modes, including electrical failure and sustained ignition. Additionally, the results indicated a relationship between the total energy of exposure and the damage state of the cable target. This data can be used to inform the fragility of the targets.
The application of hydrogen as an energy carrier has been expanding into industrial and transportation sectors enabling sustainable energy resources and providing a zero-emission energy infrastructure. The hydrogen supply infrastructure includes processes from production and storage, to transportation and distribution, to end use. Each portion of the hydrogen supply infrastructure is regulated by international, federal, state, and local entities. Regulations are enforced by entities which provide guidance and updates as necessary. While energy sources such as natural gas are currently regulated via the Code of Federal Regulations and United States Code, there might be some ambiguity as to which regulations are applicable to hydrogen and where regulatory gaps may exist. This report contains an overview of the regulations that apply to hydrogen, and those that may indirectly cover hydrogen as an energy carrier participating in a sustainable zero emission global energy system. As part of this effort, the infrastructure of hydrogen systems and regulation enforcement entities are defined, and a visual map and reference table are developed. This regulatory map and table can be used to identify the boundaries of federal oversight for each component of the hydrogen supply value chain which includes production, storage, distribution, and use.
The need to understand the risks and implications of traffic incidents involving hydrogen fuel cell electric vehicles in tunnels is increasing in importance with higher numbers of these vehicles being deployed. A risk analysis was performed to capture potential scenarios that could occur in the event of a crash and provide a quantitative calculation for the probability of each scenario occurring, with a qualitative categorization of possible consequences. The risk analysis was structured using an event sequence diagram with probability distributions on each event in the tree and random sampling was used to estimate resulting probability distributions for each end-state scenario. The most likely consequence of a crash is no additional hazard from the hydrogen fuel (98.1–99.9% probability) beyond the existing hazards in a vehicle crash, although some factors need additional data and study to validate. These scenarios include minor crashes with no release or ignition of hydrogen. When the hydrogen does ignite, it is most likely a jet flame from the pressure relief device release due to a hydrocarbon fire (0.03–1.8% probability). This work represents a detailed assessment of the state-of-knowledge of the likelihood associated with various vehicle crash scenarios. This is used in an event sequence framework with uncertainty propagation to estimate uncertainty around the probability of each scenario occurring.