Publications

39 Results
Skip to search filters

Optical logic gates using interconnected photodiodes and electro-absorption modulators

Optics InfoBase Conference Papers

Skogen, Erik J.; Vawter, Gregory A.; Tauke-Pedretti, Anna; Overberg, Mark E.; Peake, Gregory M.; Alford, Charles; Torres, David; Cajas, Florante; Sullivan, Charles T.

We demonstrate an optical gate architecture with optical isolation between input and output using interconnected PD-EAMs to perform AND and NOT functions. Waveforms for 10 Gbps AND and 40 Gbps NOT gates are shown. © 2010 Optical Society of America.

More Details

Pre-photolithographic GaAs surface treatment for improved photoresist adhesion during wet chemical etching and improved wet etch profiles

Grine, Alejandro J.; Clevenger, Jascinda C.; Patrizi, G.A.; Martinez, Marino M.; Timon, Robert P.; Sullivan, Charles T.

Results of several experiments aimed at remedying photoresist adhesion failure during spray wet chemical etching of InGaP/GaAs NPN HBTs are reported. Several factors were identified that could influence adhesion and a Design of Experiment (DOE) approach was used to study the effects and interactions of selected factors. The most significant adhesion improvement identified is the incorporation of a native oxide etch immediately prior to the photoresist coat. In addition to improving adhesion, this pre-coat treatment also alters the wet etch profile of (100) GaAs so that the reaction limited etch is more isotropic compared to wafers without surface treatment; the profiles have a positive taper in both the [011] and [011] directions, but the taper angles are not identical. The altered profiles have allowed us to predictably yield fully probe-able HBTs with 5 x 5 {micro}m emitters using 5200 {angstrom} evaporated metal without planarization.

More Details

TaN resistor process development and integration

Sullivan, Charles T.; Patrizi, G.A.; Wolfley, Steven L.; Grine, Alejandro J.; Clevenger, Jascinda C.

This paper describes the development and implementation of an integrated resistor process based on reactively sputtered tantalum nitride. Image reversal lithography was shown to be a superior method for liftoff patterning of these films. The results of a response surface DOE for the sputter deposition of the films are discussed. Several approaches to stabilization baking were examined and the advantages of the hot plate method are shown. In support of a new capability to produce special-purpose HBT-based Small-Scale Integrated Circuits (SSICs), we developed our existing TaN resistor process, designed for research prototyping, into one with greater maturity and robustness. Included in this work was the migration of our TaN deposition process from a research-oriented tool to a tool more suitable for production. Also included was implementation and optimization of a liftoff process for the sputtered TaN to avoid the complicating effects of subtractive etching over potentially sensitive surfaces. Finally, the method and conditions for stabilization baking of the resistors was experimentally determined to complete the full implementation of the resistor module. Much of the work to be described involves the migration between sputter deposition tools - from a Kurt J. Lesker CMS-18 to a Denton Discovery 550. Though they use nominally the same deposition technique (reactive sputtering of Ta with N{sup +} in a RF-excited Ar plasma), they differ substantially in their design and produce clearly different results in terms of resistivity, conformity of the film and the difference between as-deposited and stabilized films. We will describe the design of and results from the design of experiments (DOE)-based method of process optimization on the new tool and compare this to what had been used on the old tool.

More Details

Ku-band six-bit RF MEMS time delay network

2008 IEEE CSIC Symposium: GaAs ICs Celebrate 30 Years in Monterey, Technical Digest 2008

Nordquist, Christopher N.; Dyck, Christopher D.; Kraus, Garth K.; Sullivan, Charles T.; Austin IV, Franklin; Finnegan, Patrick S.; Ballance, Mark H.

A six-bit time delay circuit operating from DC to 18 GHz is reported. Capacitively loaded transmission lines are used to reduce the physical length of the delay elements and shrink the die size. Additionally, selection of the reference line lengths to avoid resonances allows the replacement of series-shunt switching elements with only series elements. With through-wafer transitions and a packaging seal ring, the 7 mm x 10 mm circuit demonstrates <2.8 dB of loss and 60 ps of delay with good delay flatness and accuracy through 18 GHz. © 2008 IEEE.

More Details

SOI-Enabled MEMS Processes Lead to Novel Mechanical Optical and Atomic Physics Devices Presentation

Herrera, Gilbert V.; McCormick, Frederick B.; Nielson, Gregory N.; Nordquist, Christopher N.; Okandan, Murat O.; Olsson, Roy H.; Ortiz, Keith O.; Platzbecker, Mark R.; Resnick, Paul J.; Shul, Randy J.; Bauer, Todd B.; Sullivan, Charles T.; Watts, Michael W.; Blain, Matthew G.; Dodd, Paul E.; Dondero, Richard D.; Garcia, Ernest J.; Galambos, Paul; Hetherington, Dale L.; Hudgens, James J.

Abstract not provided.

Final report on LDRD project : advanced optical trigger systems

Serkland, Darwin K.; Mar, Alan M.; Geib, K.M.; Peake, Gregory M.; Roose, Lars D.; Keeler, Gordon A.; Hadley, G.R.; Loubriel, Guillermo M.; Sullivan, Charles T.

Advanced optically-activated solid-state electrical switch development at Sandia has demonstrated multi-kA/kV switching and the path for scalability to even higher current/power. Realization of this potential requires development of new optical sources/switches based on key Sandia photonic device technologies: vertical-cavity surface-emitting lasers (VCSELs) and photoconductive semiconductor switch (PCSS) devices. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been used to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. In VCSEL arrays, adjacent lasers utilize identical semiconductor material and are lithographically patterned to the required dimensions. We have demonstrated multiple-line filament triggering using VCSEL arrays to approximate line generation. These arrays of uncoupled circular-aperture VCSELs have fill factors ranging from 2% to 30%. Using these arrays, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices. Photoconductive semiconductor switch (PCSS) devices offer advantages of high voltage operation (multi-kV), optical isolation, triggering with laser pulses that cannot occur accidentally in nature, low cost, high speed, small size, and radiation hardness. PCSS devices are candidates for an assortment of potential applications that require multi-kA switching of current. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been demonstrated to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. As a promising alternative to multiple discrete edge-emitting lasers, a single wafer of vertical-cavity surface-emitting lasers (VCSELs) can be lithographically patterned to achieve the desired layout of parallel line-shaped emitters, in which adjacent lasers utilize identical semiconductor material and thereby achieve a degree of intrinsic optical uniformity. Under this LDRD project, we have fabricated arrays of uncoupled circular-aperture VCSELs to approximate a line-shaped illumination pattern, achieving optical fill factors ranging from 2% to 30%. We have applied these VCSEL arrays to demonstrate single and dual parallel line-filament triggering of PCSS devices. Moreover, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices using VCSEL arrays. We have found that reliable triggering of multiple filaments requires matching of the turn-on time of adjacent VCSEL line-shaped-arrays to within approximately 1 ns. Additionally, we discovered that reliable triggering of PCSS devices at low voltages requires more optical power than we obtained with our first generation of VCSEL arrays. A second generation of higher-power VCSEL arrays was designed and fabricated at the end of this LDRD project, and testing with PCSS devices is currently underway (as of September 2008).

More Details

SOI-Enabled MEMS Processes Lead to Novel Mechanical Optical and Atomic Physics Devices

Herrera, Gilbert V.; McCormick, Frederick B.; Nielson, Gregory N.; Nordquist, Christopher N.; Okandan, Murat O.; Olsson, Roy H.; Ortiz, Keith O.; Platzbecker, Mark R.; Resnick, Paul J.; Shul, Randy J.; Bauer, Todd B.; Sullivan, Charles T.; Watts, Michael W.; Blain, Matthew G.; Dodd, Paul E.; Dondero, Richard D.; Garcia, Ernest J.; Galambos, Paul; Hetherington, Dale L.; Hudgens, James J.

Abstract not provided.

Improved manufacturability of AlGaAs/GaAs Pnp heterojunction bipolar transistors

ECS Transactions

Clevenger, J.B.; Patrizi, G.A.; Peterson, T.C.; Cich, M.J.; Baca, A.G.; Klem, John F.; Plut, Thomas A.; Fortune, T.R.; Hightower, M.S.; Torres, D.; Hawkins, Samuel D.; Sullivan, Charles T.

Specially designed Pnp heterojunction bipolar transistors (HBT's) in the AlGaAs/GaAs material system can offer improved radiation response over commercially-available silicon bipolar junction transistors (BJT's). To be a viable alternative to the silicon Pnp BJT, improvements to the manufacturability of the HBT were required. Utilization of a Pd/Ge/Au non-spiking ohmic contact to the base and implementation of a PECVD silicon nitride hard mask for wet etch control were the primary developments that led to a more reliable fabrication process. The implementation of the silicon nitride hard mask and the subsequent process improvements increased the average electrical yield from 43% to 90%. © The Electrochemical Society.

More Details

Final report on LDRD project :leaky-mode VCSELs for photonic logic circuits

Serkland, Darwin K.; Geib, K.M.; Peake, Gregory M.; Hadley, G.R.; Hargett, Terry H.; Keeler, Gordon A.; Blansett, Ethan B.; Diaz, Melissa R.; Sullivan, Charles T.

This report describes the research accomplishments achieved under the LDRD Project ''Leaky-mode VCSELs for photonic logic circuits''. Leaky-mode vertical-cavity surface-emitting lasers (VCSELs) offer new possibilities for integration of microcavity lasers to create optical microsystems. A leaky-mode VCSEL output-couples light laterally, in the plane of the semiconductor wafer, which allows the light to interact with adjacent lasers, modulators, and detectors on the same wafer. The fabrication of leaky-mode VCSELs based on effective index modification was proposed and demonstrated at Sandia in 1999 but was not adequately developed for use in applications. The aim of this LDRD has been to advance the design and fabrication of leaky-mode VCSELs to the point where initial applications can be attempted. In the first and second years of this LDRD we concentrated on overcoming previous difficulties in the epitaxial growth and fabrication of these advanced VCSELs. In the third year, we focused on applications of leaky-mode VCSELs, such as all-optical processing circuits based on gain quenching.

More Details

Fabrication techniques for low loss silicon nitride waveguides

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Shaw, Michael J.; Guo, Junpeng; Vawter, Gregory A.; Habermehl, Scott D.; Sullivan, Charles T.

Optical waveguide propagation loss due to sidewall roughness, material impurity and inhomogeneity has been the focus of many studies in fabricating planar lightwave circuits (PLC's)1,2,3 In this work, experiments were carried out to identify the best fabrication process for reducing propagation loss in single mode waveguides comprised of silicon nitride core and silicon dioxide cladding material. Sidewall roughness measurements were taken during the fabrication of waveguide devices for various processing conditions. Several fabrication techniques were explored to reduce the sidewall roughness and absorption in the waveguides. Improvements in waveguide quality were established by direct measurement of waveguide propagation loss. The lowest linear waveguide loss measured in these buried channel waveguides was 0.1 dB/cm at a wavelength of 1550 nm. This low propagation loss along with the large refractive index contrast between silicon nitride and silicon dioxide enables high density integration of photonic devices and small PLC's for a variety of applications in photonic sensing and communications.

More Details

High-Q integrated on-chip microring resonator

Proposed for publication in IEEE Photonics Technology Letters.

Vawter, Gregory A.; Hadley, G.R.; Esherick, Peter E.; Sullivan, Charles T.

We report a fully integrated high-Q factor micro-ring resonator using silicon nitride/dioxide on a silicon wafer. The micro-ring resonator is critically coupled to a low loss straight waveguide. An intrinsic quality factor of 2.4 x 10{sup 5} has been measured.

More Details

Final report on LDRD project 52722 : radiation hardened optoelectronic components for space-based applications

Blansett, Ethan B.; Klem, John F.; Hawkins, Samuel D.; Sanchez, Victoria S.; Sullivan, Charles T.; Wrobel, Theodore F.; Blansett, Ethan B.; Serkland, Darwin K.; Keeler, Gordon A.; Geib, K.M.; Karpen, Gary D.; Diaz, Melissa R.; Peake, Gregory M.; Hargett, Terry H.

This report describes the research accomplishments achieved under the LDRD Project 'Radiation Hardened Optoelectronic Components for Space-Based Applications.' The aim of this LDRD has been to investigate the radiation hardness of vertical-cavity surface-emitting lasers (VCSELs) and photodiodes by looking at both the effects of total dose and of single-event upsets on the electrical and optical characteristics of VCSELs and photodiodes. These investigations were intended to provide guidance for the eventual integration of radiation hardened VCSELs and photodiodes with rad-hard driver and receiver electronics from an external vendor for space applications. During this one-year project, we have fabricated GaAs-based VCSELs and photodiodes, investigated ionization-induced transient effects due to high-energy protons, and measured the degradation of performance from both high-energy protons and neutrons.

More Details

Integration of polymeric optical waveguides with SOI MEMS structures

Proceedings of SPIE - The International Society for Optical Engineering

Bakke, Thor; Sullivan, Charles T.

Optical switches based on deflection of a waveguide element offer low crosstalk, low polarization dependency, low power consumption, and high degree of integration. Such switches made by post processing of polymeric waveguides onto MEMS structures of silicon-on-insulator (SOI) efficiently combine low loss waveguides with the exceptional mechanical properties of single crystalline silicon. An important aspect of this concept is that it allows independent optimization of the mechanical and optical structures by efficiently separating the two. Well established, high yield methods exist for structuring silicon based on deep reactive ion etching (DRIE), which allows the formation of mechanical structures with high aspect ratio. The mechanical structure can then be planarized for further processing by utilizing spin coating properties of certain polymers. This allows post processing of high-resolution passive polymeric waveguide networks that can fulfil a variety of functions depending on the application, including spot-size transformers for low loss coupling to optical fibers. These waveguides can also potentially be integrated with CMOS or active optoelectronic elements into forming highly functional hybrid photonic integrated circuits, partly facilitated by the low temperatures required for processing of polymers. This paper highlights key process technologies and specifically discusses issues related to an optical switch that was developed for proof of concept. This switch was made of 5μm thick SOI with 3μm wide, high optical confinement polymeric waveguides. Switching times were down to 30μs, switching voltages 20 to 50V, and crosstalk was -32dB. The paper further outlines possible applications of the switch to state-of-the-art problems in photonics.

More Details

Final Report on LDRD Project: High-Bandwidth Optical Data Interconnects for Satellite Applications

Sanchez, Victoria S.; Sullivan, Charles T.; Allerman, A.A.; Rienstra, Jeffrey L.; Serkland, Darwin K.; Geib, K.M.; Blansett, Ethan B.; Karpen, Gary D.; Peake, Gregory M.; Hargett, Terry H.

This report describes the research accomplishments achieved under the LDRD Project ''High-Bandwidth Optical Data Interconnects for Satellite Applications.'' The goal of this LDRD has been to address the future needs of focal-plane-array (FPA) sensors by exploring the use of high-bandwidth fiber-optic interconnects to transmit FPA signals within a satellite. We have focused primarily on vertical-cavity surface-emitting laser (VCSEL) based transmitters, due to the previously demonstrated immunity of VCSELs to total radiation doses up to 1 Mrad. In addition, VCSELs offer high modulation bandwidth (roughly 10 GHz), low power consumption (roughly 5 mW), and high coupling efficiency (greater than -3dB) to optical fibers. In the first year of this LDRD, we concentrated on the task of transmitting analog signals from a cryogenic FPA to a remote analog-to-digital converter. In the second year, we considered the transmission of digital signals produced by the analog-to-digital converter to a remote computer on the satellite. Specifically, we considered the situation in which the FPA, analog-to-digital converter, and VCSEL-based transmitter were all cooled to cryogenic temperatures. This situation requires VCSELs that operate at cryogenic temperature, dissipate minimal heat, and meet the electrical drive requirements in terms of voltage, current, and bandwidth.

More Details

GaAs MOEMS Technology

Spahn, Olga B.; Fuller, Charles T.; Bauer, Thomas M.; Sullivan, Charles T.; Grossetete, Grant G.; Cich, Michael C.; Tigges, Chris P.; Reno, J.L.; Peake, Gregory M.; Klem, John F.

Many MEMS-based components require optical monitoring techniques using optoelectronic devices for converting mechanical position information into useful electronic signals. While the constituent piece-parts of such hybrid opto-MEMS components can be separately optimized, the resulting component performance, size, ruggedness and cost are substantially compromised due to assembly and packaging limitations. GaAs MOEMS offers the possibility of monolithically integrating high-performance optoelectronics with simple mechanical structures built in very low-stress epitaxial layers with a resulting component performance determined only by GaAs microfabrication technology limitations. GaAs MOEMS implicitly integrates the capability for radiation-hardened optical communications into the MEMS sensor or actuator component, a vital step towards rugged integrated autonomous microsystems that sense, act, and communicate. This project establishes a new foundational technology that monolithically combines GaAs optoelectronics with simple mechanics. Critical process issues addressed include selectivity, electrochemical characteristics, and anisotropy of the release chemistry, and post-release drying and coating processes. Several types of devices incorporating this novel technology are demonstrated.

More Details

Photonics Integration Devices and Technologies

Vawter, Gregory A.; Lin, Shawn-Yu L.; Sullivan, Charles T.; Zubrzycki, Walter J.; Chow, Weng W.; Allerman, A.A.; Wendt, J.R.

We have used selective AlGaAs oxidation, dry-etching, and high-gain semiconductor laser simulation to create new in-plane lasers with interconnecting passive waveguides for use in high-density photonic circuits and future integration of photonics with electronics. Selective oxidation and doping of semiconductor heterostructures have made vertical cavity surface emitting lasers (VCSELs) into the world's most efficient low-power lasers. We apply oxidation technology to improve edge-emitting lasers and photonic-crystal waveguides, making them suitable for monolithic integrated microsystems. Two types of lasers are investigated: (1) a ridge laser with resonant coupling to an output waveguide; (2) a selectively-oxidized laser with a low active volume and potentially sub-milliAmp threshold current. Emphasis is on development of high-performance lasers suited for monolithic integration with photonic circuit elements.

More Details

Final Report and Documentation for the Optical Backplane/Interconnect for High Speed Communication LDRD

Robertson, Perry J.; Chen, Helen Y.; Brandt, James M.; Sullivan, Charles T.; Pierson, Lyndon G.; Witzke, Edward L.

Current copper backplane technology has reached the technical limits of clock speed and width for systems requiring multiple boards. Currently, bus technology such as VME and PCI (types of buses) will face severe limitations are the bus speed approaches 100 MHz. At this speed, the physical length limit of an unterminated bus is barely three inches. Terminating the bus enables much higher clock rates but at drastically higher power cost. Sandia has developed high bandwidth parallel optical interconnects that can provide over 40 Gbps throughput between circuit boards in a system. Based on Sandia's unique VCSEL (Vertical Cavity Surface Emitting Laser) technology, these devices are compatible with CMOS (Complementary Metal Oxide Semiconductor) chips and have single channel bandwidth in excess of 20 GHz. In this project, we are researching the use of this interconnect scheme as the physical layer of a greater ATM (Asynchronous Transfer Mode) based backplane. There are several advantages to this technology including small board space, lower power and non-contact communication. This technology is also easily expandable to meet future bandwidth requirements in excess of 160 Gbps sometimes referred to as UTOPIA 6. ATM over optical backplane will enable automatic switching of wide high-speed circuits between boards in a system. In the first year we developed integrated VCSELs and receivers, identified fiber ribbon based interconnect scheme and a high level architecture. In the second year, we implemented the physical layer in the form of a PCI computer peripheral card. A description of future work including super computer networking deployment and protocol processing is included.

More Details
39 Results
39 Results