Publications

12 Results
Skip to search filters

Planar-localized surface plasmon resonance device by block-copolymer and nanoimprint lithography fabrication methods

Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics

Yang, Chu-Yeu P.; Yang, Elaine L.; Steinhaus, Charles A.; Liu, Chi C.; Nealey, Paul F.; Skinner, J.L.

The authors report on the integration of delocalized surface plasmon resonances (SPRs) and localized surface plasmon resonances (LSPRs) on a single device. The submicron SPR device was fabricated with nanoimprint lithography (NIL). Gold nanoparticles for LSPR generation were created and deposited via three methods and analyzed with rhodamine 6 G and surface-enhanced Raman spectroscopy (SERS). Compared to drop-cast and thin film annealing methods, gold nanoparticles fabricated from a diblock-copolymer NIL template produced the most significant effect on the charge-transfer component of the SERS enhancement mechanism due to near-field interactions at the 10 nm inter-particle separation region. The authors also report a 26 enhancement of optical resonance with an integrated SPR-LSPR plasmonic device consisting of a two-dimensional submicron aluminum grating fully coupled with gold nanoparticles measuring 20.4 nm in diameter in a water medium. If the 2D aluminum grating were coupled to an optimized nanoparticle SERS device fabricated from a DBCP NIL template, the coupled nanoparticle-grating device could exhibit an even higher enhancement and optical resonance performance. © 2012 American Vacuum Society.

More Details

Nanofabrication of SERS device by an integrated block-copolymer and nanoimprint lithography method

Yang, Chu-Yeu P.; Steinhaus, Charles A.; Skinner, J.L.

The integration of block-copolymers (BCPs) and nanoimprint lithography (NIL) presents a novel and cost-effective approach to achieving nanoscale patterning capabilities. The authors demonstrate the fabrication of a surface-enhanced Raman scattering device using templates created by the BCP-NIL integrated method. The method utilizes a poly(styrene-block-methyl methacrylate) cylindrical-forming diblock-copolymer as a masking material to create a Si template, which is then used to perform a thermal imprint of a poly(methyl methacrylate) (PMMA) layer on a Si substrate. Au with a Cr adhesion layer was evaporated onto the patterned PMMA and the subsequent lift-off resulted in an array of nanodots. Raman spectra collected for samples of R6G on Si substrates with and without patterned nanodots showed enhancement of peak intensities due to the presence of the nanodot array. The demonstrated BCP-NIL fabrication method shows promise for cost-effective nanoscale fabrication of plasmonic and nanoelectronic devices.

More Details
12 Results
12 Results