Publications

8 Results
Skip to search filters

Selected applications and processing techniques for LTCC

Sandoval, Charles E.

Low Temperature Cofired Ceramic has proven itself in microelectronics, microsystems (including microfluidic systems), sensors, RF features, and various non-electronic applications. We will discuss selected applications and the processing associated with those applications. We will then focus on our recent work in the area of EMI shielding using full tape thickness features (FTTF) and sidewall metallization. The FTTF is very effective in applications with -150 dB isolation requirements, but presents obvious processing difficulties in full-scale fabrication. The FTTF forms a single continuous solid wall around the volume to be shielded by using sequential punching and feature-filling. We discuss the material incompatibilities and manufacturing considerations that need to be addressed for such structures and show preliminary implementations.

More Details

LDRD 10729 Ultra Miniaturization of RF using Microwave Chip on Flex Technology, FY02 Final Report

Sandoval, Charles E.; Wouters, Gregg A.; Sloan, George R.

This report describes the activities on the ''Ultra Miniaturization of RF'' project conducted as part of Sandia's Laboratory Directed Research and Development (LDRD) program. The objective was to evaluate a multichip module technology known as Microwave Chip on Flex (MCOF) [1], which is a newer form of the standard high density interconnect (HDI) technology originally developed by General Electric and Lockheed Martin [2,3]. The program was a three-year effort. In the first year, the team focused on understanding the technology and developing a basic design library. In the second year, devices and interconnects used at L, X, and Ku frequency bands were evaluated via a test coupon (with no application specific circuit design). In the third year, we designed, fabricated, and evaluated a specific Ku-band circuit. The circuit design and layout was performed by Sandia, and the module fabrication was performed by Lockheed Martin Government Electronic Systems. In MCOF technology [1], bare die are placed face down on an adhesive backed flex circuit. The first level of the circuit is a pre-patterned titanium copper thin film metal system on a polyimide dielectric material. The complete module is then framed and filled with an epoxy encapsulant. The module is flipped and via holes are laser drilled through subsequent interconnect layers. Each addition layer is adhered to the top of the module and laser drilling repeated. The baseline design consisted of the original pre-patterned layer plus two additional metal layers. The base of the module is then machined so the heat spreader and frame are planar for a good thermal and electrical connection to the next assembly. This report describes the efforts conducted to evaluate the technology and its applicability to Sandia RF systems.

More Details
8 Results
8 Results