For systems that require complete metallic enclosures (e.g., containment buildings for nuclear reactors), it is impossible to access interior sensors and equipment using standard electromagnetic techniques. A viable way to communicate and supply power through metallic barriers is the use of elastic waves and ultrasonic transducers, introducing several design challenges that must be addressed. Specifically, the use of multiple communication channels on the same enclosure introduces an additional mechanism for signal crosstalk between channels: guided waves propagating in the barrier between channels. This work numerically and experimentally investigates a machined phononic crystal to block MHz Lamb wave propagation between ultrasonic communication channels, greatly reducing wave propagation and the resulting crosstalk voltage. Blind grooves are machined into one or both sides of a metallic barrier to introduce a periodic unit cell, greatly altering the guided wave dispersion in the barrier. Numerical simulations are used to determine a set of groove geometries for testing, and experiments were performed to characterize the wave-blocking performance of each design. The best-performing design was tested using piezoelectric transducers bonded to the barrier, showing a 14.4 dB reduction in crosstalk voltage. Overall, the proposed periodic grooving method is a promising technique for completely isolating ultrasonic power/data transfer systems operating in a narrow frequency range.
ROL-PEBBL is a C++, MPI-based parallel code for mixed-integer PDE-constrained optimization (MIPDECO). In these problems we wish to optimize (control, design, etc.) physical systems, which must obey the laws of physics, when some of the decision variables must take integer values. ROL-PEBBL combines a code to efficiently search over integer choices (PEBBL = Parallel Enumeration Branch-and-Bound Library) and a code for efficient nonlinear optimization, including PDE-constrained optimization (ROL = Rapid Optimization Library). In this report, we summarize the design of ROL-PEBBL and initial applications/results. For an artificial source-inversion problem, finding sources of pollution on a grid from sparse samples, ROL-PEBBLs solution for the nest grid gave the best optimization guarantee for any general solver that gives both a solution and a quality guarantee.
For systems that require complete metallic enclosures (e.g., containment buildings for nuclear reactors), it is impossible to access interior sensors and equipment using standard electromagnetic techniques. A viable way to communicate and supply power through metallic barriers is the use of elastic waves and ultrasonic transducers, introducing several design challenges that must be addressed. The objective of this work is to investigate the use of piezoelectric transducers for both sending and receiving power and data through a metallic barrier using elastic waves at ultrasonic frequencies above 1 MHz. High-fidelity numerical and simplified analytical models are developed for ultrasonic transmission and novel strategies are explored to eliminate crosstalk between channels.
Two dimensional SiC-air phononic crystals have been modeled, fabricated, and tested with a measured bandgap ranging from 665 to 693 MHz. Snowflake air inclusions on a hexagonal lattice were used for the phononic crystal. By manipulating the phononic crystal lattice and inserting circular inclusions, a waveguide was created at 680 MHz. The combined insertion loss and propagation loss for the waveguide is 8.2 dB, i.e., 39% of the energy is guided due to the high level of the confinement afforded by the phononic crystal. The SiC-air phononic crystals and waveguides were fabricated using a CMOS-compatible process, which allows for seamless integration of these devices into wireless communication systems operating at microwave frequencies.
The performance of electronic systems for radio-frequency (RF) spectrum analysis is critical for agile radar and communications systems, ISR (intelligence, surveillance, and reconnaissance) operations in challenging electromagnetic (EM) environments, and EM-environment situational awareness. While considerable progress has been made in size, weight, and power (SWaP) and performance metrics in conventional RF technology platforms, fundamental limits make continued improvements increasingly difficult. Alternatively, we propose employing cascaded transduction processes in a chip-scale nano-optomechanical system (NOMS) to achieve a spectral sensor with exceptional signal-linearity, high dynamic range, narrow spectral resolution and ultra-fast sweep times. By leveraging the optimal capabilities of photons and phonons, the system we pursue in this work has performance metrics scalable well beyond the fundamental limitations inherent to all electronic systems. In our device architecture, information processing is performed on wide-bandwidth RF-modulated optical signals by photon-mediated phononic transduction of the modulation to the acoustical-domain for narrow-band filtering, and then back to the optical-domain by phonon-mediated phase modulation (the reverse process). Here, we rely on photonics to efficiently distribute signals for parallel processing, and on phononics for effective and flexible RF-frequency manipulation. This technology is used to create RF-filters that are insensitive to the optical wavelength, with wide center frequency bandwidth selectivity (1-100GHz), ultra-narrow filter bandwidth (1-100MHz), and high dynamic range (70dB), which we will present. Additionally, using this filter as a building block, we will discuss current results and progress toward demonstrating a multichannel-filter with a bandwidth of < 10MHz per channel, while minimizing cumulative optical/acoustic/optical transduced insertion-loss to ideally < 10dB. These proposed metric represent significant improvements over RF-platforms.
We present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.
The systematic design, fabrication, and characterization of an isolated, single-mode, 90° bend phononic crystal (PnC) waveguide are presented. A PnC consisting of a 2D square array of circular air holes in an aluminum substrate is used, and waveguides are created by introducing a line defect in the PnC lattice. A high transmission coefficient is observed (-1 dB) for the straight sections of the waveguide, and an overall 2.3 dB transmission loss is observed (a transmission coefficient of 76%) for the 90° bend. Further optimization of the structure may yield higher transmission efficiencies. This manuscript shows the complete design process for an engineered 90° bend PnC waveguide from inception to experimental demonstration.
The Frequency Translation to Demonstrate a Hybrid Quantum Architecture project focused on developing nonlinear optics to couple two different ion species and make their emitted UV photons indistinguishable. Successful demonstration of photonic coupling of different ion species lays the foundation for coupling drastically different types of qubits, such as ions and quantum dots. Frequency conversion of single photons emitted from single ions remains a "hot" topic with many groups pursing this effort; however due to challenges in producing short period periodically poled crystal it has yet to be realized. This report details the efforts of trying to frequency convert single photons emitted from trapped ions to other wavelengths. We present our theoretical studies of candidate platforms for frequency conversion: photonic crystal fibers, X(2) nonlinear crystals in optical cavities, and photonic crystal cavities. We also present experiment results in ion trapping X(2) nonlinear crystals measurements and photonic crystal fabrication
After years in the field, many materials suffer degradation, off-gassing, and chemical changes causing build-up of measurable chemical atmospheres. Stand-alone embedded chemical sensors are typically limited in specificity, require electrical lines, and/or calibration drift makes data reliability questionable. Along with size, these "Achilles' heels" have prevented incorporation of gas sensing into sealed, hazardous locations which would highly benefit from in-situ analysis. We report on development of an all-optical, mid-IR, fiber-optic based MEMS Photoacoustic Spectroscopy solution to address these limitations. Concurrent modeling and computational simulation are used to guide hardware design and implementation.
In this work, we demonstrated engineered modification of propagation of thermal phonons, i.e. at THz frequencies, using phononic crystals. This work combined theoretical work at Sandia National Laboratories, the University of New Mexico, the University of Colorado Boulder, and Carnegie Mellon University; the MESA fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce world-leading control of phonon propagation in silicon at frequencies up to 3 THz. These efforts culminated in a dramatic reduction in the thermal conductivity of silicon using phononic crystals by a factor of almost 30 as compared with the bulk value, and about 6 as compared with an unpatterned slab of the same thickness. This work represents a revolutionary advance in the engineering of thermoelectric materials for optimal, high-ZT performance. We have demonstrated the significant reduction of the thermal conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication techniques and in a planar platform that is amenable to integration with typical microelectronic systems. The measured reduction in thermal conductivity as compared to bulk silicon was about a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction. Since the electrical conductivity was only reduced by a corresponding factor of about 3 due to the removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by a factor of 2. Given the number of papers in literature devoted to only a small, incremental change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal conductivity is groundbreaking. The results in this work were obtained using silicon, a material that has benefitted from enormous interest in the microelectronics industry and that has a fairly large thermoelectric power factor. In addition, the techniques and scientific understanding developed in the research can be applied to a wide range of materials, with the caveat that the thermal conductivity of such a material be dominated by phonon, rather than electron, transport. In particular, this includes several thermoelectric materials with attractive properties at elevated temperatures (i.e., greater than room temperature), such as silicon germanium and silicon carbide. It is reasonable that phononic crystal patterning could be used for high-temperature thermoelectric devices using such materials, with applications in energy scavenging via waste-heat recovery and thermoelectric cooling for high-performance microelectronic circuits. The only part of the ZT picture missing in this work was the experimental measurement of the Seebeck coefficient of our phononic crystal devices. While a first-order approximation indicates that the Seebeck coefficient should not change significantly from that of bulk silicon, we were not able to actually verify this assumption within the timeframe of the project. Additionally, with regards to future high-temperature applications of this technology, we plan to measure the thermal conductivity reduction factor of our phononic crystals as elevated temperatures to confirm that it does not diminish, given that the nominal thermal conductivity of most semiconductors, including silicon, decreases with temperature above room temperature. We hope to have the opportunity to address these concerns and further advance the state-of-the-art of thermoelectric materials in future projects.
This paper demonstrates silicon carbide phononic crystal cavities for RF and microwave micromechanical resonators. We demonstrate design, fabrication, and characterization of Silicon Carbide/air phononic crystals used as Bragg acoustic mirrors to confine energy in a lateral SiC cavity. Aluminum nitride transducers drive and sense SiC overtone cavities in the 2-3GHz range with fxQ products exceeding 3×1013 in air. This approach enables decoupling of the piezoelectric AlN material from the SiC cavity, resulting in high Q resonators at microwave frequencies. The SiC cavities are fabricated in a CMOS-compatible process, enabling integration with wirelesss communication systems.