In this project we endeavored to improve the state-of-the-art in UV lasers diodes. We made important advancements in several fronts from modeling, to epitaxial growth, to fabrication, and testing. Throughout the project it became clear that polarization doping would be able to help advance the state of laser diode design in terms of electrical performance, but the optical design would need to be investigated to ensure that a 2D guided mode would be supported. New capability in optical modeling using commercial software demonstrated that the new polarization doped structures would be viable. New capability in pulsed testing was established to reach the current and voltage required. Our fabricated devices had some parasitic electrical paths which hindered performance that we were ultimately unable to overcome in the project timeframe. We do believe that future projects will be able to leverage the advancements made under this project.
Heterogeneous Integration (HI) may enable optoelectronic transceivers for short-range and long-range radio frequency (RF) photonic interconnect using wavelength-division multiplexing (WDM) to aggregate signals, provide galvanic isolation, and reduce crosstalk and interference. Integration of silicon Complementary Metal-Oxide-Semiconductor (CMOS) electronics with InGaAsP compound semiconductor photonics provides the potential for high-performance microsystems that combine complex electronic functions with optoelectronic capabilities from rich bandgap engineering opportunities, and intimate integration allows short interconnects for lower power and latency. The dominant pure-play foundry model plus the differences in materials and processes between these technologies dictate separate fabrication of the devices followed by integration of individual die, presenting unique challenges in die preparation, metallization, and bumping, especially as interconnect densities increase. In this paper, we describe progress towards realizing an S-band WDM RF photonic link combining 180 nm silicon CMOS electronics with InGaAsP integrated optoelectronics, using HI processes and approaches that scale into microwave and millimeter-wave frequencies.
The design, fabrication, and performance of InGaAs and InGaP/GaAs microcells are presented. These cells are integrated with a Si wafer providing a path for insertion in hybrid concentrated photovoltaic modules. Comparisons are made between bonded cells and cells fabricated on their native wafer. The bonded cells showed no evidence of degradation in spite of the integration process that involved significant processing including the removal of the III-V substrate.
Optical diagnostics play a central role in dynamic compression research. Currently, streak cameras are employed to record temporal and spectroscopic information in single-event experiments, yet are limited in several ways; the tradeoff between time resolution and total record duration is one such limitation. This project solves the limitations that streak cameras impose on dynamic compression experiments while reducing both cost and risk (equipment and labor) by utilizing standard high-speed digitizers and commercial telecommunications equipment. The missing link is the capability to convert the set of experimental (visible/x-ray) wavelengths to the infrared wavelengths used in telecommunications. In this report, we describe the problem we are solving, our approach, our results, and describe the system that was delivered to the customer. The system consists of an 8-channel visible-to- infrared converter with > 2 GHz 3-dB bandwidth.
Layer disordering and doping compensation of an Al0.028Ga0.972N/AlN superlattice by implantation are demonstrated. The as-grown sample exhibits intersubband absorption at ∼1.56 μm which is modified when subject to a silicon implantation. After implantation, the intersubband absorption decreases and shifts to longer wavelengths. Also, with increasing implant dose, the intersubband absorption decreases. It is shown that both layer disordering of the heterointerfaces and doping compensation from the vacancies produced during the implantation cause the changes in the intersubband absorption. Such a method is useful for removing absorption in spatially defined areas of III-nitride optoelectronic devices by, for example, creating low-loss optical waveguides monolithically that can be integrated with as-grown areas operating as electro-absorption intersubband modulators.
We present the bandwidth enhancement of an EAM monolithically integrated with two mutually injection-locked lasers. An improvement in the modulation efficiency and bandwidth are shown with mutual injection locking.
We present a photonic integrated circuit (PIC) composed of two strongly coupled lasers. This PIC utilizes the dynamics of mutual injection locking to increase the relaxation resonance frequency from 3 GHz to beyond 30 GHz.
Rotation sensors (gyros) and accelerometers are essential components for all precision-guided weapons and autonomous mobile surveillance platforms. MEMS gyro development has been based primarily on the properties of moving mass to sense rotation and has failed to keep pace with the concurrent development of MEMS accelerometers because the reduction of size and therefore mass is substantially more detrimental to the performance of gyros than to accelerometers. A small ({approx}0.2 cu in), robust ({approx}20,000g), inexpensive ({approx}$500), tactical grade performance ({approx}10-20 deg/hr.) gyro is vital for the successful implementation of the next generation of ''smart'' weapons and surveillance apparatus. The range of applications (relevant to Sandia's mission) that are substantially enhanced in capability or enabled by the availability of a gyro possessing the above attributes includes nuclear weapon guidance, fuzing, and safing; synthetic aperture radar (SAR) motion compensation; autonomous air and ground vehicles; gun-launched munitions; satellite control; and personnel tracking. For example, a gyro of this capability would open for consideration more fuzing options for earth-penetration weapons. The MEMS gyros currently available are lacking in one or more of the aforementioned attributes. An integrated optical gyro, however, possesses the potential of achieving all desired attributes. Optical gyros use the properties of light to sense rotation and require no moving mass. Only the individual optical elements required for the generation, detection, and control of light are susceptible to shock. Integrating these elements immensely enhances the gyro's robustness while achieving size and cost reduction. This project's goal, a joint effort between organizations 2300 and 1700, was to demonstrate an RMOG produced from a monolithic photonic integrated circuit coupled with a SiON waveguide resonator. During this LDRD program, we have developed the photonic elements necessary for a resonant micro-optical gyro. We individually designed an AlGaAs distributed Bragg reflector laser; GaAs phase modulator and GaAs photodiode detector. Furthermore, we have fabricated a breadboard gyroscope, which was used to confirm modeling and evaluate signal processing and control circuits.