Uniaxial strain, reverse-ballistic impact experiments were performed on wrought 17-4 PH H1025 stainless steel, and the resulting Hugoniot was determined to a peak stress of 25 GPa through impedance matching to known standard materials. The measured Hugoniot showed evidence of a solid-solid phase transition, consistent with other martensitic Fe-alloys. The phase transition stress in the wrought 17-4 PH H1025 stainless steel was measured in a uniaxial strain, forward-ballistic impact experiment to be 11.4 GPa. Linear fits to the Hugoniot for both the low and high pressure phase are presented with corresponding uncertainty. The low pressure martensitic phase exhibits a shock velocity that is weakly dependent on the particle velocity, consistent with other martensitic Fe-alloys.
The high-pressure dynamic response of titanium dioxide (TiO 2) is not only of interest because of its numerous industrial applications but also because of its structural similarities to silica (SiO 2). We performed plate impact experiments in a two-stage light gas gun, at peak stresses from 64 to 221 GPa to determine the TiO 2 response along the Hugoniot. The lower stress experiment at 64 GPa shows an elastic behavior followed by an elastic-plastic transition, whereas the high stress experiments above 64 GPa show a single wave structure. Previous shock studies have shown the presence of high-pressure phases (HPP) I (26 GPa) and HPP II (100 GPa); however, our data suggest that the HPP I phase is stable up to 150 GPa. Using a combination of data from our current study and our previous Z-data, we determine that TiO 2 likely melts on the Hugoniot at 157 GPa. Furthermore, our data confirm that TiO 2 is not highly incompressible as shown by a previous study.
Graded density impactors (GDIs) have long been of interest to provide off-Hugoniot loading capabilities for impact systems. We describe a new technique which utilizes sputter deposition to produce an approximately 40 µm-thick film containing alternating layers of Al and Cu. The thicknesses of the respective layers are adjusted to give an effective density gradient through the film. The GDIs were launched into samples of interest with a 2-stage light gas gun, and the resulting shock-ramp-release velocity profiles were measured over timescales of ~10 ns with a new velocimetry probe. Results are shown for the direct impact of the film onto a LiF window, which allows for the dynamic characterization of the GDI, as well as from impact onto a thin (~40 µm) sputtered Ta sample backed by a LiF window. These measurements were coupled into mesoscale numerical simulations to infer the strength of Ta at the high rate (107 s-1), and high pressure (1 MBar) conditions this unique capability provides. Initial results suggest this is a viable strength platform which fills a critical gap and aids in cross-platform comparisons with other high-pressure strength platforms.
Composite materials are used as alternatives to conventional metallics in a multitude of applications including military ground vehicles, aircraft, space launch and re-entry vehicles and even personnel protection where weight savings are critical. In application, these materials are susceptible to high velocity impacts from various threats and it is essential that the response of these materials, under relevant conditions, be understood in order to provide optimized effective designs. This work details an on-going effort to validate the anisotropic multiple constituent model (MCM) within the CTH hydrocode. Within the CTH framework, the anisotropic MCM model is coupled with an equation of state (EOS) and provides continuum averaged stress and strain fields for each constituents (fiber and resin) of a composite microstructure from which progressive damage evaluations can be performed. In this paper we focus on recent validation efforts where woven S2/SC15 (glass/epoxy) composite panels were impacted with steel spheres at various impact velocities and angles of obliquity. The experimental testing was performed at the Shock Thermodynamics Applied Research (STAR) Facility at Sandia National Laboratories to provide data for further validation of the MCM model under oblique impact conditions. Oblique impacts result in stress fields which exercise the anisotropy of the strength model and the EOS coupling of the MCM model more robustly. Results are presented for both the CTH MCM model predictions and the experimental testing. The primary comparison metrics evaluated are the predicted and observed damage extent, overall damage pattern, and residual velocity of the projectile.
The work presented in this paper details both an experimental program and an associated numerical modeling effort to characterize and predict the ballistic response of S-2 glass/SC15 epoxy composite panels. The experimental program consisted of ¼ inch diameter soft carbon steel spheres impacting ¼ and ½ inch thick flat composite panels at velocities ranging from 220 to 1570 m/s. High speed cameras were used to capture the impact event and resulting residual velocity of the spheres for each test configuration. After testing, each panel was inspected both visually and with ultrasonic C-scan techniques to determine the extent and depth of damage imparted on the panel by the impactor. The numerical modeling efforts utilized the anisotropic multi-constituent composite model (MCM) within the CTH shock physics hydrocode. The MCM model allows for evaluation of damage at the constituent level through continuum averaged stress and strain fields. The model also accounts for the inherent coupling of the equation of state and strength response that occurs in anisotropic composite materials. Finally, the simulation results are compared against the experimentally measured residual velocity as a quantitative metric and against the measured damage extent and patterns as a qualitative metric. The comparisons show good agreement in residual velocity and damage extent.
The use of S2 glass/SC15 epoxy woven fabric composite materials for blast and ballistic protection has been an area of on-going research over the past decade. In order to accurately model this material system within potential applications under extreme loading conditions, a well characterized and understood anisotropic equation of state (EOS) is needed. This work details both an experimental program and associated analytical modelling efforts which aim to provide better physical understanding of the anisotropic EOS behavior of this material. Experimental testing focused on planar shock impact tests loading the composite to peak pressures of 15 GPa in both the transverse and longitudinal orientations. Test results highlighted the anisotropic response of the material and provided a basis by which the associated numeric micromechanical investigation was compared. Results of the combined experimental and numerical modeling investigation provided insights into not only the constituent material influence on the composite response but also the importance of the plain weave microstructure geometry and the significance of the microstructural configuration.
This article details the implementation and application of the glass-specific computational constitutive model by Holmquist and Johnson (J Appl Mech 78:051003, 2011) to simulate the dynamic response of soda-lime glass under high rate and high pressure shock conditions. The predictive capabilities of this model are assessed through comparison of experimental data with numerical results from computations using the CTH shock physics code. The formulation of this glass model is reviewed in the context of its implementation within CTH. Using a variety of experimental data compiled from the open literature, a complete parameterization of the model describing the observed behavior of soda-lime glass is developed. Simulation results using the calibrated soda-lime glass model are compared to flyer plate and Taylor rod impact experimental data covering a range of impact and failure conditions spanning an order of magnitude in velocity and pressure. The complex behavior observed in the experimental testing is captured well in the computations, demonstrating the capability of the glass model within CTH.