Publications

12 Results
Skip to search filters

PRO-X Fuel Cycle Transportation and Crosscutting Progress Report

Honnold, Philip H.; Crabtree, Lauren M.; Higgins, Michael H.; Williams, Adam D.; Finch, Robert F.; Cipiti, Benjamin B.; Ammerman, Douglas J.; Farnum, Cathy O.; Kalinina, Elena A.; Ruehl, Matthew R.; Hawthorne, Krista H.

The PRO-X program is actively supporting the design of nuclear systems by developing a framework to both optimize the fuel cycle infrastructure for advanced reactors (ARs) and minimize the potential for production of weapons-usable nuclear material. Three study topics are currently being investigated by Sandia National Laboratories (SNL) with support from Argonne National Laboratories (ANL). This multi-lab collaboration is focused on three study topics which may offer proliferation resistance opportunities or advantages in the nuclear fuel cycle. These topics are: 1) Transportation Global Landscape, 2) Transportation Avoidability, and 3) Parallel Modular Systems vs Single Large System (Crosscutting Activity).

More Details

Emergency Planning Considerations for Advanced Nuclear Power Reactors

Walton, Fotini W.; Farnum, Cathy O.; Jones, Joseph A.

The purpose of this scoping study is to develop an approach for establishing emergency planning requirements for advanced nuclear power reactors and other new reactor technologies. The approach considers existing emergency planning requirements and guidance. More specifically the study focuses on establishing criteria and process to determine the size of the plume and ingestion exposure pathway emergency planning zone. The review of emergency planning in place for existing licensed nuclear facilities provides insight and informs the suggested process for establishing this Emergency Planning Zone (EPZ) process.

More Details

RADTRAN 6/RadCat 6 user guide

Weiner, Ruth F.; Farnum, Cathy O.

This document provides a detailed discussion and a guide for the use of the RadCat 6.0 Graphical User Interface input file generator for the RADTRAN code, Version 6. RadCat 6.0 integrates the newest analysis capabilities of RADTRAN 6.0, including an economic model, updated loss-of-lead shielding model, a new ingestion dose model, and unit conversion. As of this writing, the RADTRAN version in use is RADTRAN 6.02.

More Details

Evaluation of the applicability of existing nuclear power plant regulatory requirements in the U.S. to advanced small modular reactors

Middleton, Bobby M.; Wheeler, Timothy A.; Farnum, Cathy O.; Duran, Felicia A.; Jordan, Sabina E.; Baum, Gregory A.

The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.

More Details

Z-inertial fusion energy: power plant final report FY 2006

Olson, Craig L.; McConnell, Paul E.; Rochau, Gary E.; Vigil, Virginia L.; Cipiti, Benjamin B.; Rodriguez, Salvador B.; Morrow, Charles W.; Farnum, Cathy O.; Durbin, S.G.; Aragon, Dannelle S.

This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

More Details

Nonactinide Isotopes and Sealed Sources Web Application

Fernandez, James P.; Jones, Michael L.; Farnum, Cathy O.; Waldron, Carol A.

The Nonactinide Isotopes and Sealed Sources (NISS) Web Application is a web-based database query and data management tool designed to facilitate the identification and reapplication of radioactive sources throughout the Department of Energy (DOE) complex. It provides search capability to the general Internet community and detailed data management functions to contributing site administrators.

More Details

A Simplified Methodology for Estimating the Pressure Buildup and Hydrogen Concentration Within a 2R/6M Container

Sanchez, Lawrence C.; Farnum, Cathy O.; Polansky, Gary F.

A simplified and bounding methodology for analyzing the pressure buildup and hydrogen concentration within an unvented 2R container was developed (the 2R is a sealed container within a 6M package). The specific case studied was the gas buildup due to alpha radiolysis of water moisture sorbed on small quantities (less than 20 Ci per package) of plutonium oxide. Analytical solutions for gas pressure buildup and hydrogen concentration within the unvented 2R container were developed. Key results indicated that internal pressure buildup would not be significant for a wide range of conditions. Hydrogen concentrations should also be minimal but are difficult to quantify due to a large variation/uncertainty in model parameters. Additional assurance of non-flammability can be obtained by the use of an inert backfill gas in the 2R container.

More Details
12 Results
12 Results