Publications

15 Results
Skip to search filters

Conflicting Information and Compliance With COVID-19 Behavioral Recommendations

Naugle, Asmeret B.; Rothganger, Fredrick R.; Verzi, Stephen J.; Doyle, Casey L.

The prevalence of COVID-19 is shaped by behavioral responses to recommendations and warnings. Available information on the disease determines the population’s perception of danger and thus its behavior; this information changes dynamically, and different sources may report conflicting information. We study the feedback between disease, information, and stay-at-home behavior using a hybrid agent-based-system dynamics model that incorporates evolving trust in sources of information. We use this model to investigate how divergent reporting and conflicting information can alter the trajectory of a public health crisis. The model shows that divergent reporting not only alters disease prevalence over time, but also increases polarization of the population’s behaviors and trust in different sources of information.

More Details

Optimal Electric Grid Black Start Restoration Subject to Intentional Threats

Stamber, Kevin L.; Arguello, Bryan A.; Garrett, Richard A.; Beyeler, Walter E.; Doyle, Casey L.; Ojetola, Samuel; Schoenwald, David A.

Efficient restoration of the electric grid from significant disruptions – both natural and manmade – that lead to the grid entering a failed state is essential to maintaining resilience under a wide range of threats. Restoration follows a set of black start plans, allowing operators to select among these plans to meet the constraints imposed on the system by the disruption. Restoration objectives aim to restore power to a maximum number of customers in the shortest time. Current state-of-the-art for restoration modeling breaks the problem into multiple parts, assuming a known network state and full observability and control by grid operators. These assumptions are not guaranteed under some threats. This paper focuses on a novel integration of modeling and analysis capabilities to aid operators during restoration activities. A power flow-informed restoration framework, comprised of a restoration mixed-integer program informed by power flow models to identify restoration alternatives, interacts with a dynamic representation of the grid through a cognitive model of operator decision-making, to identify and prove an optimal restoration path. Application of this integrated approach is illustrated on exemplar systems. Validation of the restoration is performed for one of these exemplars using commercial solvers, and comparison is made between the steps and time involved in the commercial solver, and that required by the restoration optimization in and of itself, and by the operator model in acting on the restoration optimization output. Publications and proposals developed under this work, along with a path forward for additional expansion of the work, and summary of what was achieved, are also documented.

More Details

Advanced Detection of Wellbore Failure for Safe and Secure Utilization of Subsurface Infrastructure

Matteo, Edward N.; Conley, Donald M.; Verzi, Stephen J.; Roberts, Barry L.; Doyle, Casey L.; Sobolik, Steven R.; Gilletly, Samuel G.; Bauer, Stephen J.; Pyrak-Nolte, L.P.; Reda Taha, M.M.; Stormont, J.C.; Crandall, D.C.; Moriarty, Dylan; John, Esther W.; Wilson, Jennifer E.; Bettin, Giorgia B.; Hogancamp, Joshua H.; Fernandez, S.G.; Anwar, I.A.; Abdellatef, M.A.; Murcia, D.H.; Bland, J.B.

The main goal of this project was to create a state-of-the-art predictive capability that screens and identifies wellbores that are at the highest risk of catastrophic failure. This capability is critical to a host of subsurface applications, including gas storage, hydrocarbon extraction and storage, geothermal energy development, and waste disposal, which depend on seal integrity to meet U.S. energy demands in a safe and secure manner. In addition to the screening tool, this project also developed several other supporting capabilities to help understand fundamental processes involved in wellbore failure. This included novel experimental methods to characterize permeability and porosity evolution during compressive failure of cement, as well as methods and capabilities for understanding two-phase flow in damaged wellbore systems, and novel fracture-resistant cements made from recycled fibers.

More Details

Emergent Recursive Multiscale Interaction in Complex Systems

Naugle, Asmeret B.; Doyle, Casey L.; Sweitzer, Matthew; Rothganger, Fredrick R.; Verzi, Stephen J.; Lakkaraju, Kiran L.; Kittinger, Robert; Bernard, Michael L.; Chen, Yuguo C.; Loyal, Joshua L.; Mueen, Abdullah M.

This project studied the potential for multiscale group dynamics in complex social systems, including emergent recursive interaction. Current social theory on group formation and interaction focuses on a single scale (individuals forming groups) and is largely qualitative in its explanation of mechanisms. We combined theory, modeling, and data analysis to find evidence that these multiscale phenomena exist, and to investigate their potential consequences and develop predictive capabilities. In this report, we discuss the results of data analysis showing that some group dynamics theory holds at multiple scales. We introduce a new theory on communicative vibration that uses social network dynamics to predict group life cycle events. We discuss a model of behavioral responses to the COVID-19 pandemic that incorporates influence and social pressures. Finally, we discuss a set of modeling techniques that can be used to simulate multiscale group phenomena.

More Details

Integrating Machine Learning into a Methodology for Early Detection of Wellbore Failure [Slides]

Matteo, Edward N.; Roberts, Barry L.; Sobolik, Steven R.; Gilletly, Samuel G.; Doyle, Casey L.; John, Esther W.; Verzi, Stephen J.

Approximately 93% of US total energy supply is dependent on wellbores in some form. The industry will drill more wells in next ten years than in the last 100 years (King, 2014). Global well population is around 1.8 million of which approximately 35% has some signs of leakage (i.e. sustained casing pressure). Around 5% of offshore oil and gas wells “fail” early, more with age and most with maturity. 8.9% of “shale gas” wells in the Marcellus play have experienced failure (120 out of 1,346 wells drilled in 2012) (Ingraffea et al., 2014). Current methods for identifying wells that are at highest priority for increased monitoring and/or at highest risk for failure consists of “hand” analysis of multi-arm caliper (MAC) well logging data and geomechanical models. Machine learning (ML) methods are of interest to explore feasibility for increasing analysis efficiency and/or enhanced detection of precursors to failure (e.g. deformations). MAC datasets used to train ML algorithms and preliminary tests were run for “predicting” casing collar locations and performed above 90% in classification and identifying of casing collar locations.

More Details

Integrating Machine Learning into a Methodology for Early Detection of Wellbore Failure [Slides]

Matteo, Edward N.; Roberts, Barry L.; Sobolik, Steven R.; Gilletly, Samuel G.; Doyle, Casey L.; John, Esther W.; Verzi, Stephen J.

Approximately 93% of US total energy supply is dependent on wellbores in some form. The industry will drill more wells in next ten years than in the last 100 years (King, 2014). Global well population is around 1.8 million of which approximately 35% has some signs of leakage (i.e. sustained casing pressure). Around 5% of offshore oil and gas wells “fail” early, more with age and most with maturity. 8.9% of “shale gas” wells in the Marcellus play have experienced failure (120 out of 1,346 wells drilled in 2012) (Ingraffea et al., 2014). Current methods for identifying wells that are at highest priority for increased monitoring and/or at highest risk for failure consists of “hand” analysis of multi-arm caliper (MAC) well logging data and geomechanical models. Machine learning (ML) methods are of interest to explore feasibility for increasing analysis efficiency and/or enhanced detection of precursors to failure (e.g. deformations). MAC datasets used to train ML algorithms and preliminary tests were run for “predicting” casing collar locations and performed above 90% in classification and identifying of casing collar locations.

More Details

Hierarchical effects facilitate spreading processes on synthetic and empirical multilayer networks

PLoS ONE

Doyle, Casey L.; Gunda, Thushara G.; Naugle, Asmeret B.

In this paper we consider the effects of corporate hierarchies on innovation spread across multilayer networks, modeled by an elaborated SIR framework. We show that the addition of management layers can significantly improve spreading processes on both random geometric graphs and empirical corporate networks. Additionally, we show that utilizing a more centralized working relationship network rather than a strict administrative network further increases overall innovation reach. In fact, this more centralized structure in conjunction with management layers is essential to both reaching a plurality of nodes and creating a stable adopted community in the long time horizon. Further, we show that the selection of seed nodes affects the final stability of the adopted community, and while the most influential nodes often produce the highest peak adoption, this is not always the case. In some circumstances, seeding nodes near but not in the highest positions in the graph produces larger peak adoption and more stable long-time adoption.

More Details

Group Formation Theory at Multiple Scales

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Doyle, Casey L.; Naugle, Asmeret B.; Bernard, Michael L.; Lakkaraju, Kiran L.; Kittinger, Robert; Sweitzer, Matthew; Rothganger, Fredrick R.

There is a wealth of psychological theory regarding the drive for individuals to congregate and form social groups, positing that people may organize out of fear, social pressure, or even to manage their self-esteem. We evaluate three such theories for multi-scale validity by studying them not only at the individual scale for which they were originally developed, but also for applicability to group interactions and behavior. We implement this multi-scale analysis using a dataset of communications and group membership derived from a long-running online game, matching the intent behind the theories to quantitative measures that describe players’ behavior. Once we establish that the theories hold for the dataset, we increase the scope to test the theories at the higher scale of group interactions. Despite being formulated to describe individual cognition and motivation, we show that some group dynamics theories hold at the higher level of group cognition and can effectively describe the behavior of joint decision making and higher-level interactions.

More Details
15 Results
15 Results