Publications

5 Results
Skip to search filters

Understanding Phase and Interfacial Effects of Spall Fracture in Additively Manufactured Ti-5Al-5V-5Mo-3Cr

Branch, Brittany A.; Ruggles, Timothy R.; Miers, John C.; Massey, Caroline E.; Moore, David G.; Brown, Nathan B.; Duwal, Sakun D.; Silling, Stewart A.; Mitchell, John A.; Specht, Paul E.

Additive manufactured Ti-5Al-5V-5Mo-3Cr (Ti-5553) is being considered as an AM repair material for engineering applications because of its superior strength properties compared to other titanium alloys. Here, we describe the failure mechanisms observed through computed tomography, electron backscatter diffraction (EBSD), and scanning electron microscopy (SEM) of spall damage as a result of tensile failure in as-built and annealed Ti-5553. We also investigate the phase stability in native powder, as-built and annealed Ti-5553 through diamond anvil cell (DAC) and ramp compression experiments. We then explore the effect of tensile loading on a sample containing an interface between a Ti-6Al-V4 (Ti-64) baseplate and additively manufactured Ti-5553 layer. Post-mortem materials characterization showed spallation occurred in regions of initial porosity and the interface provides a nucleation site for spall damage below the spall strength of Ti-5553. Preliminary peridynamics modeling of the dynamic experiments is described. Finally, we discuss further development of Stochastic Parallel PARticle Kinteic Simulator (SPPARKS) Monte Carlo (MC) capabilities to include the integration of alpha (α)-phase and microstructural simulations for this multiphase titanium alloy.

More Details

Understanding the role of segmentation on process-structure–property predictions made via machine learning

International Journal of Advanced Manufacturing Technology

Massey, Caroline E.; Saldana, Christopher J.; Moore, David G.

The present study investigated the effect of porosity surface determination methods on performance of machine learning models used to predict the tensile properties of AlSi10Mg processed by laser powder bed fusion from micro-computed tomography data. Machine learning models applied in this work include support vector machines, neural networks, decision trees, and Bayesian classifiers. The effects of isosurface thresholding and local gradient approaches for porosity segmentation, as well as image filtering schemes, on model precision were evaluated for samples produced under differing levels of global energy density.

More Details

Porosity Determination and Classification of Laser Powder Bed Fusion AlSi10Mg Dogbones Using Machine Learning

Conference Proceedings of the Society for Experimental Mechanics Series

Massey, Caroline E.; Moore, David G.; Saldana, Christopher J.

Metal additive manufacturing allows for the fabrication of parts at the point of use as well as the manufacture of parts with complex geometries that would be difficult to manufacture via conventional methods (milling, casting, etc.). Additively manufactured parts are likely to contain internal defects due to the melt pool, powder material, and laser velocity conditions when printing. Two different types of defects were present in the CT scans of printed AlSi10Mg dogbones: spherical porosity and irregular porosity. Identification of these pores via a machine learning approach (i.e., support vector machines, convolutional neural networks, k-nearest neighbors’ classifiers) could be helpful with part qualification and inspections. The machine learning approach will aim to label the regions of porosity and label the type of porosity present. The results showed that a combination approach of Canny edge detection and a classification-based machine learning model (k-nearest neighbors or support vector machine) outperformed the convolutional neural network in segmenting and labeling different types of porosity.

More Details
5 Results
5 Results