Publications

18 Results
Skip to search filters

sCO2 Brayton Energy Conversion Customer Discovery

Mendez Cruz, Carmen M.; Wilson, Mollye C.

All energy production systems need efficient energy conversion systems. Current Rankine cycles use water to generate steam at temperatures where efficiency is limited to around 40%. As existing fossil and nuclear power plants are decommissioned due to end of effective life and/or societies’ desire for cleaner generation options, more efficient energy conversion is needed to keep up with increasing electricity demands. Modern energy generation technologies, such as advanced nuclear reactors and concentrated solar, coupled to high efficiency sCO2 conversion systems provide a solution to efficient, clean energy systems. Leading R&D communities worldwide agree that the successful development of sCO2 Brayton power cycle technology will eventually bring about large-scale changes to existing multi-billion-dollar global markets and enable power applications not currently possible or economically justifiable. However, all new technologies face challenges in the path to commercialization and the electricity sector is distinctively risk averse. The Sandia sCO2 Brayton team needs to better understand what the electricity sector needs in terms of new technology risk mitigation, generation efficiency, reliability improvements above current technology, and cost requirements which would make new technology adoption worthwhile. Relying on the R&D community consensus that a sCO2 power cycle will increase the revenue of the electrical industry, without addressing the electrical industry’s concerns, significantly decreases the potential for adoption at commercial scale. With a clear understanding of the market perspectives on technology adoption, including military, private sector, and utilities customers, the Sandia Brayton Team can resolve industry concerns for smoother development and faster transition to commercialization. An extensive customer discovery process, similar to that executed through the NSF’s I-Corp program, is necessary in order to understand the pain points of the market and articulate the value proposition of Brayton systems in terms that engage decision makers and facilitate commercialization of the technology.

More Details

sCO2 Brayton Cycle: Roadmap to sCO2 Power Cycles NE Commercial Applications

Mendez Cruz, Carmen M.; Rochau, Gary E.

The mission of the Energy Conversion (EC) area of the Advanced Reactor Technology (ART) program is to commercialize the sCO2 Brayton cycle for Advance Reactors and for the Supercritical Transformational Electric Production (STEP) program. The near-term objective of the EC team efforts is to support the development of a commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the first STEP demonstration system with the lowest risk possible. This document details the status of technology, policy and market considerations, documentation of gaps and needs, and outlines the steps necessary for the successful development and deployment of commercial sCO2 Brayton Power Systems along the path to nuclear reactor applications.

More Details

sCO2 Power Cycles Summit Summary, November 2017

Mendez Cruz, Carmen M.; Rochau, Gary E.; Lance, Blake L.

Over the past ten years, the Department of Energy (DOE) has helped to develop components and technologies for the Supercritical Carbon Dioxide (sCO2) power cycle capable of efficient operation at high temperatures and high efficiency. The DOE Offices of Fossil Energy, Nuclear Energy, and Energy Efficiency and Renewable Energy collaborated in the planning and execution of the sCO2 Power Cycle Summit conducted in Albuquerque, NM in November 2017. The summit brought together participants from government, national laboratories, research, and industry to engage in discussions regarding the future of sCO2 Power Cycles Technology. This report summarizes the work involved in summit planning and execution, before, during, and after the event, including the coordination between three DOE offices and technical content presented at the event.

More Details

Systems Engineering Model for ART Energy Conversion

Mendez Cruz, Carmen M.; Rochau, Gary E.; Wilson, Mollye C.

The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

More Details

Enabling Technologies for Ultra-Safe and Secure Modular Nuclear Energy

Mendez Cruz, Carmen M.; Rochau, Gary E.; Middleton, Bobby M.; Rodriguez, Salvador B.; Rodriguez, Carmelo R.; Schleicher, Robert S.

Sandia National Laboratories and General Atomics are pleased to respond to the Advanced Research Projects Agency-Energy (ARPA-e)’s request for information on innovative developments that may overcome various current reactor-technology limitations. The RFI is particularly interested in innovations that enable ultra-safe and secure modular nuclear energy systems. Our response addresses the specific features for reactor designs called out in the RFI, including a brief assessment of the current state of the technologies that would enable each feature and the methods by which they could be best incorporated into a reactor design.

More Details
18 Results
18 Results