Solderability testing of electroless nickel-electroless palladium-immersion gold
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Electronic Materials
New Pb-free alloys that are variations of the Sn-Ag-Cu (SAC) ternary system, having reduced Ag content, are being developed to address the poor shock load survivability of current SAC305, SAC396, and SAC405 compositions. However, the thermal mechanical fatigue properties must be determined for the new alloys in order to develop constitutive models for predicting solder joint fatigue. A long-term study was initiated to investigate the time-independent (stress-strain) and time-dependent (creep) deformation properties of the alloy 98.5Sn-1.0Ag-0.5Cu (wt.% SAC105). The compression stress-strain properties, which are reported herein, were obtained for the solder in as-cast and aged conditions. The test temperatures were -25°C, 25°C, 75°C, 125°C, and 160°C and the strain rates were 4.2 × 10 -5 s -1 and 8.3 × 10 -4s -1. The SAC105 performance was compared with that of the 95.5Sn-3.9Ag-0.6Cu (SAC396) solder. Like the SAC396 solder, the SAC105 microstructure exhibited only small microstructural changes after deformation. The stress-strain curves showed work-hardening behavior that diminished with increased temperature to a degree that indicated dynamic recrystallization activity. The aging treatment had a small effect on the stress-strain curves, increasing the degree of work hardening. The yield stresses of SAC105 were significantly less than those of SAC396. The aging treatment caused a small drop in yield stress, as is observed with the SAC396 material. The static modulus values of SAC105 were lower than those of SAC396 and exhibited both temperature and aging treatment dependencies that differed from those of the SAC396 material. These trends clearly show that the stress-strain behavior of Sn-Ag-Cu solders is sensitive to the specific, individual composition. © 2009 U.S. Department of Energy.
Abstract not provided.
IEEE Transactions on Components and Packaging Technologies
The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H2S at 30 °C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to close the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily. © 2007 IEEE.
Abstract not provided.