Publications

10 Results for kuhlman
Skip to search filters

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies (M2SF-21SN010301072)

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.; Rutqvist, Jonny R.; Guglielmi, Yves G.; Sasaki, Tsubasa S.; Deng, Hang D.; Li, Pei L.; Steefel, Carl S.; Tournassat, Christophe T.; Xu, Hao X.; Babhulgaonkar, Shaswat B.; Birkholzer, Jens T.; Sauer, Kirsten B.; Caporuscio, Florie C.; Rock, Marlena J.; Zavarin, Mavrik Z.; Wolery, Thomas J.; Chang, Elliot C.; Wainwright, Haruko W.

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of heatgenerating nuclear waste disposition in deep-seated clay/shale/argillaceous rock. International collaboration activities such as heater tests, continuous field data monitoring, and postmortem analysis of samples recovered from these have elucidated key information regarding changes in the engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of sampled bentonite material from such tests as well as experiments conducted on these are key to the characterization of thermal effects affecting bentonite clay barrier performance and the extent of sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches (e.g., continuum and discrete) to tackle issues related to flow and transport at various scales of the host-rock, its interactions with barrier materials, and EBS design concept.

More Details

International Collaborations Activities on Disposal in Argillite R&D: Characterization Studies and Modeling Investigations

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.

This interim report is an update of ongoing experimental and modeling work on bentonite material described in Jové Colón et al. (2019, 2020) from past international collaboration activities. As noted in Jové Colón et al. (2020), work on international repository science activities such as FEBEX-DP and DECOVALEX19 is either no longer continuing by the international partners. Nevertheless, research activities on the collected sample materials and field data are still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are described elsewhere (Birkholzer et al. 2019; Jové Colón et al. 2020) but will be explained here when needed. The current reports recent reactive-transport modeling on the leaching of sedimentary rock.

More Details

Evaluation of Spent Nuclear Fuel Disposition in Salt (FY18)

Kuhlman, Kristopher L.; Lopez, Carlos M.; Mills, Melissa M.; Rimsza, Jessica R.; Sassani, David C.

This report summarizes the 2018 fiscal year (FY18) field, laboratory, and modeling work funded by the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) campaign as part of the Sandia National Laboratories Salt Research and Development (R&D) and Salt International work packages. This report satisfies level-two milestone M2SF-18SNO10303031and comprises three related but stand-alone sections. The first section summarizes the programmatic progress made to date in the DOE-NE salt program and its goals going forward. The second section presents brine composition modeling and laboratory activities related to salt evaporation experiments, which will be used to interpret data collected during the heater test. The third section presents theoretical and numerical modeling work done to investigate the effects brine composition have on dihedral angle and the permeability of salt.

More Details

DECOVALEX 2023 Task D -- Interim Report from SNL

Jove Colon, Carlos F.; Lopez, Carlos M.; Kuhlman, Kristopher L.

The capability of a 1-D PFLOTRAN model to simulate the S1-3 bentonite saturation experiment has been demonstrated and validated against experimental data. Work remains to be done to refine 1-D PFLOTRAN simulations of the experiment S1-4 which include evaluation of parameter sensitivities on the prediction of material saturation and relative permeabilities. This and further testing of PFLOTRAN capabilities will be done as part of DECOVALEX 2023 Task D contributions by the SNL team in the coming months.

More Details
10 Results for kuhlman
10 Results for kuhlman