Publications

106 Results
Skip to search filters

Internal 2-D Surface Temperature Measurements for Large Complex Geometries

Sjoberg, Carl M.

For 2D-temperature monitoring applications, a variant of EIT (Electrical Impedance Tomography) is evaluated computationally in this work. Literature examples of poor sensor performance in the center of the 2D domains away from the side electrodes motivated this study which seeks to overcome some of the previously noted shortcomings. In particular, the use of ‘sensing skins’ with novel tailored baseline conductivities were examined using the EIDORS package for EIT. It was found that the best approach for detecting a hot spot depends on several factors such as the current injection (stimulation) patterns, the measurement patterns, and the reconstruction algorithms. For a well-performing combination of these factors, tailored baseline conductivities were assessed and compared to the baseline uniform conductivity. It was discovered that for some EIT applications, a tailored distribution needs to be smooth and that sudden changes in the conductivity gradients should be avoided. Still, the benefits in terms of improved EIT performance were small for conditions for which the EIT measurements had been ‘optimized’ for the uniform baseline case. Within the limited scope of this study, only two specific cases showed benefits from tailored distributions. For one case, a smooth tailored distribution with increased baseline conductivity in the center provided a better separation of two centrally located hot spots. For another case, a smooth tailored distribution with reduced conductivity in the center provided better estimates of the magnitudes of two hot spots near the center of the sensing skin.

More Details

Octane Requirements of Lean Mixed-Mode Combustion in a Direct-Injection Spark-Ignition Engine

Energy and Fuels

Kim, Namho K.; Vuilleumier, David V.; Singh, Eshan S.; Sjoberg, Carl M.

Here, this study investigates the octane requirements of a hybrid flame propagation and controlled autoignition mode referred to as mixed-mode combustion (MMC), which allows for strong control over combustion parameters via a spark-initiated deflagration phase. Due to the throughput limitations associated with both experiments and 3-D computational fluid dynamics calculations, a hybrid 0-D and 1-D modeling methodology was developed, supported by experimental validation data. This modeling approach relied on 1-D, two-zone engine simulations to predict bulk in-cylinder thermodynamic conditions over a range of engine speeds, compression ratios, intake pressures, trapped residual levels, fueling rates, and spark timings. Those predictions were then transferred to a 0-D chemical kinetic model, which was used to evaluate the autoignition behavior of fuels when subjected to temperature–pressure trajectories of interest. Finally, the predicted autoignition phasings were screened relative to the progress of the modeled deflagration-based combustion in order to determine if an operating condition was feasible or infeasible due to knock or stability limits. The combined modeling and experimental results reveal that MMC has an octane requirement similar to modern stoichiometric spark-ignition engines in that fuels with high research octane number (RON) and high octane sensitivity (S) enable higher loads. Experimental trends with varying RON and S were well predicted by the model for 1000 and 1400 rpm, confirming its utility in identifying the compatibility of a fuel’s autoignition behavior with an engine configuration and operating strategy. However, the model was not effective in predicting (nor designed to predict) operability limits due to cycle-to-cycle variations, which experimentally inhibited operation of some fuels at 2000 rpm. Putting the operable limits and efficiency from MMC in the context of a state-of-the-art engine, the MMC showed superior efficiencies over the range investigated, demonstrating the potential to further improve fuel economy.

More Details

Influence of gasoline fuel formulation on lean autoignition in a mixed-mode-combustion (deflagration/autoignition) engine

Combustion and Flame

Singh, Eshan S.; Vuilleumier, David; Kim, Namho K.; Sjoberg, Carl M.

Stoichiometric spark-ignition engines suffer efficiency penalties due to throttling losses at low loads, a low specific-heat ratio of the stoichiometric working fluid, and limits on compression ratio due to end-gas autoignition leading to undesirable knocking. Mixed-Mode Combustion (MMC) mitigates these shortcomings by using a lean working fluid where a spark-initiated pilot-stabilized deflagrative flame front is followed by controlled end-gas autoignition. This MMC study investigates the effects of initial conditions (intake air temperature, intake pressure, equivalence ratio, and intake oxygen fraction) on autoignition tendency of four gasoline-range fuels with varying properties and composition. The use of fuels with varying octane sensitivity (S) allowed exploring the importance of low-temperature heat release in triggering autoignition. Fuels with high S were less reactive for conditions that promote low-temperature chemistry (operation at high intake air pressure or without N2 dilution). Conversely, an Alkylate fuel with low S showed a greater autoignition resistance at operating conditions that were unfavorable for low-temperature chemistry. Next, the effect of residual gas composition on autoignition tendency of fuels was examined with a chemical-kinetics model. Among the various molecules in the residual gas, nitric oxide (NO) enhanced the low-temperature chemistry and increased the autoignition tendency most significantly. The fuels’ autoignition response to increasing NO amount corroborates the experimental observations. Next, the sequential autoignition of the end-gas was assessed to be less impacted by thermal stratification because of lean mixtures showing relatively less low-temperature chemistry, when compared to stoichiometric mixtures. Next, the effect of changing equivalence ratio on the autoignition was found to be similar for all fuels, regardless of their S. With changing intake air temperature, the response of fuels’ autoignition tendency depended on the dilution level used. At high dilution (i.e. low intake [O2]), fuels’ reactivity increased with increasing intake air temperature. In contrast, for operation without dilution, the autoignition tendency of the low-S Alkylate fuel decreased with increasing intake air temperature, while that of high-S High Cycloalkane fuel still increased with increasing intake air temperature. In conclusion, conventional octane metrics (RON and MON) have utility in assessing the autoignition tendency under lean MMC operation. Moreover, the fuel requirements for MMC align with that of stoichiometric operation: i.e., high RON and high S fuels are desirable for stable non-knocking operation.

More Details

The influence of intake flow and coolant temperature on gasoline spray morphology during early-injection DISI engine operation

International Journal of Engine Research

Reuss, David L.; Kim, Namho K.; Sjoberg, Carl M.

Multi-hole gasoline injectors operating at conditions spanning throttled early-intake stroke operation produce spray plumes that either remained separated or merge and collapse due to flash boiling. Flash boiling occurs due to the sudden expansion of gas bubbles in the liquid fuel at high fuel temperature and low ambient pressure. This study records high-speed images of spray-morphology changes due to in-cylinder flow, thereby revealing operating conditions that do and do not affect the self-induced morphology observed in quiescent vessels. Specifically, in a central-injection, four-valve, high-tumble engine, where the thermodynamic state and in-cylinder cross flow are dynamic. Additionally, motivated by cold start and hot restart operation, the fuel pressure, coolant temperature, in-cylinder air pressure, and engine rpm were systematically varied over relevant operating conditions, which bracketed the range from non- to flash-boiling sprays. The results reveal the operating conditions at which the in-cylinder cross flow disrupts the spray morphology as well as the extent of the disruption. At 650 rpm, the spray morphology was similar to that observed in quiescent vessels at nominally equivalent fuel temperature and in-cylinder pressure, indicating that the spray’s self-induced entrainment flow dominated the in-cylinder flow. However, for fuel temperature and ambient pressure near the transition between non- and flash-boiling, the intake cross flow at higher engine speed (1950 rpm) significantly disrupted the spray morphology. The high cross-flow velocity appears to induce plume merging and collapse, whereas none was evident at low rpm (650 rpm). This study led to the postulate that the spray merging and collapse are governed by the rate of atomization near the nozzle exit, presumed to be controlled by either or both aerodynamic atomization and flash-boiling intensity. It would then follow that spray modeling in CFD requires atomization models that blend the effects of both physical processes.

More Details

Fuel Effects on Multimode Engine Operation (Sandia National Laboratories) (DOE VTO Annual Progress Report for FY21)

Sjoberg, Carl M.; Killingsworth, Nick K.; Kolodziej, Christopher P.; Sinha Majumdar, Sreshtha S.; Szybist, James P.

In total, light-duty vehicles in the United States travel on the order of 3 trillion miles annually, providing tremendous societal and personal benefits. However, the environmental burden is excessive, prompting Co-Optimization of Fuel and Engines (Co-Optima) program efforts to provide the science needed to increase engine efficiency and produce non-fossil fuels with reduced greenhouse gas emissions. Boosted spark-ignition (SI) engines provide high power density by offering high loads and engine speeds, making them light-weight and attractive for light-duty vehicles. Unfortunately, the engine efficiency drops off at lower loads and speeds, where the engine spends most time during typical driving. Multimode SI engines can use a more efficient advanced lean combustion mode at lower loads and speeds, while reverting to boosted SI under high-load conditions. Within Co-Optima, multiple advanced lean combustion modes have been explored; these include stratified-charge SI, pre-chamber lean SI, and advanced compression ignition (ACI) techniques such as spark-assisted compression ignition (SACI). For these combustion modes, focus has been on determining fuel properties that enable higher engine efficiency, clean and stable combustion, and effective exhaust aftertreatment. This report highlights recent efforts funded by the Vehicle Technologies Office at multiple National Laboratories that supported the multimode project in Co-Optima. It also includes a brief summary of biofuel production research funded by the Bioenergy Technologies Office.

More Details

Impact of coolant temperature on the combustion characteristics and emissions of a stratified-charge direct-injection spark-ignition engine fueled with E30

Fuel

He, Xu; Zhou, Yang; Liu, Zechang; Yang, Qing; Sjoberg, Carl M.; Vuilleumier, David; Ding, Carl P.; Liu, Fushui

The direct injection spark ignition (DISI) engine has received considerable attention due to its potential to increase the power density of traditional spark ignition engines while significantly improving fuel economy through lean, unthrottled combustion. However, the market introduction of DISI engines operated in a lean combustion mode is inhibited by their unsatisfactory emissions, especially during cold start conditions that make proper mixture formation more challenging. Ethanol-blended gasoline, now a widely used fuel, makes the cold start of a DISI engine more difficult, leading to higher HC and soot emissions because of the high latent heat of vaporization of ethanol relative to gasoline. This work investigated the impact of coolant temperature on the characteristics of combustion and emissions in a stratified-charge DISI engine fueled with an E30 fuel (i.e. 30% ethanol in gasoline), while the coolant temperature was alternated between four levels (45, 60, 75, and 90 °C) to simulate different conditions throughout the warm-up process. The experiments showed that the coolant temperature affected the post-spark inflammation time, as well as the speed, intensity, and stability of the combustion process in the engine. When the coolant temperature rose, the engine produced more NOX and less CO, PM and HC. In addition, high-speed direct photography was used to obtain crank-angle resolved images of fuel sprays and flames in the cylinder. As the coolant temperature rose, the liquid spray lengths became shorter, reducing the possibility of wall wetting, and reduced irradiance from soot particles also indicated less non-premixed combustion. The in-cylinder imaging results are consistent with the observed combustion and emission characteristics and shed light on the underlying processes. Some potential solutions to the emissions challenges faced here could be either raising in-cylinder temperatures by using trapped residuals or modifying the injection schedule, for example by increasing the number of injections or to inject later in the cycle into a higher-density environment.

More Details

Large eddy simulation of lean mixed-mode combustion assisted by partial fuel stratification in a spark-ignition engine

Journal of Energy Resources Technology, Transactions of the ASME

Xu, Chao; Som, Sibendu; Sjoberg, Carl M.

Partial fuel stratification (PFS) is a promising fuel injection strategy to improve the stability of lean combustion by applying a small amount of pilot injection right before spark timing. Mixed-mode combustion, which makes use of end-gas autoignition following conventional deflagration-based combustion, can be further utilized to speed up the overall combustion. In this study, PFS-assisted mixed-mode combustion in a lean-burn direct injection sparkignition (DISI) engine is numerically investigated using multi-cycle large eddy simulation (LES). A previously developed hybrid G-equation/well-stirred reactor combustion model for the well-mixed operation is extended to the PFS-assisted operation. The experimental spray morphology is employed to derive spray model parameters for the pilot injection. The LES-based model is validated against experimental data and is further compared with the Reynolds-averaged Navier-Stokes (RANS)-based model. Overall, both RANS and LES predict the mean pressure and heat release rate traces well, while LES outperforms RANS in capturing the cycle-to-cycle variation (CCV) and the combustion phasing in the mass burned space. Liquid and vapor penetrations obtained from the simulations agree reasonably well with the experiment. Detailed flame structures predicted from the simulations reveal the transition from a sooting diffusion flame to a lean premixed flame, which is consistent with experimental findings. LES captures more wrinkled and stretched flames than RANS. Finally, the LES model is employed to investigate the impacts of fuel properties, including heat of vaporization (HoV) and laminar burning speed (SL). Combustion phasing is found more sensitive to SL than to HoV, with a larger fuel property sensitivity of the heat release rate from autoignition than that from deflagration. Moreover, the combustion phasing in the PFS-assisted operation is shown to be less sensitive to SL compared with the well-mixed operation.

More Details

Advanced Light-Duty Spark Ignition Engine Research: Co-Optimization of Fuels and Engines and Partnership to Advance Combustion Engines (FY2020 Annual Progress Report)

Sjoberg, Carl M.

This report covers recent progress on research tasks that support both the Co-Optimization of Fuels and Engines (Co-Optima) initiative and the Partnership to Advance Combustion Engines (PACE) consortium. The Co-Optima tasks further the science-base needed by industry stakeholders to co-evolve the next generation of highly efficient direct injection spark ignition (DISI) engines and new gasoline-type fuels. The research emphasis is on fuel effects on multimode spark ignition (SI) engine operation, which uses traditional non-dilute stoichiometric operation for peak load and power but reverts to lean operation at lower loads to provide higher fuel economy. This work focuses on determining desirable fuel specifications in terms of well-established metrics like research octane number (RON) and motor octane number, but it also involves the assessment of new fuel metrics, including fuel sooting propensity and phi-sensitivity. The PACE task supports the development of predictive computational fluid dynamics (CFD) modeling, which promises to unlock new strategies for high-efficiency combustion while minimizing tailpipe emissions. Here, the primary fuel is a regular E10 gasoline (i.e., a regular gasoline blend containing 10% ethanol), and focus is on fuel-spray dynamics and soot emissions. Soot-formation pathways are studied to determine how the pathways change with injection strategies and the thermal state of the engine (i.e., cold-starting vs. fully warmed-up operation). This PACE task also contributed to the development of an optimal E10 gasoline surrogate fuel, as reported in detail elsewhere

More Details

Effects of Injection Timing and Duration on Fuel-Spray Collapse and Wall-Wetting in a Stratified Charge SI Engine

SAE Technical Papers

Kim, Namho K.; Vuilleumier, David; Sjoberg, Carl M.

Fuel-lean combustion using late injection during the compression stroke can result in increased soot emissions due to excessive wall-wetting and locally unfavorable air-fuel mixtures due to spray collapse. Multi-hole injectors, most commonly used, experiencing spray collapse, can worsen both problems. Hence, it is of interest to study the contribution of spray collapse to wall-wetting to understand how it can be avoided. This optical-engine study reveals spray characteristics and the associated wall-wetting for collapsing and non-collapsing sprays, when systematically changing the intake pressure, injection duration and timing. High-speed imaging of Mie-scattered light was used to observe changes in the spray structure, and a refractive index matching (RIM) technique was utilized to detect and quantify the area of fuel-film patterns on bottom of the piston bowl. E30 (gasoline blended with 30% ethanol by volume) was used throughout the experiments. E30 is known to be more susceptible to spray collapse and the high heat of vaporization of ethanol tends to exacerbate fuel-film formation. These experimental results highlight the impact of in-cylinder ambient conditions on spray morphology and the influence of spray behavior on fuel-films. Analysis of the spray images reveals that spray collapse is a strong function of in-cylinder density and its evolution in spite of the changes in in-cylinder pressure, temperature, and flow at the operating condition used in this study. This explains similarities in the degree of spray collapse and resultant wall-wetting from various injection timings and intake pressures. It is also found that at operating conditions where the spray undergoes transition from non-collapsing to collapsing spray during an injection event, both fuel-film area and variability in fuel-film pattern increased.

More Details

Optical investigation of a partial fuel stratification strategy to stabilize overall lean operation of a DISI engine fueled with gasoline and E30

Energies

Tornatore, Cinzia; Sjoberg, Carl M.

This paper offers new insights into a partial fuel stratification (PFS) combustion strategy that has proven to be effective at stabilizing overall lean combustion in direct injection spark ignition engines. To this aim, high spatial and temporal resolution optical diagnostics were applied in an optically accessible engine working in PFS mode for two fuels and two different durations of pilot injection at the time of spark: 210 μs and 330 μs for E30 (gasoline blended with ethanol by 30% volume fraction) and gasoline, respectively. In both conditions, early injections during the intake stroke were used to generate a well-mixed lean background. The results were compared to rich, stoichiometric and lean well-mixed combustion with different spark timings. In the PFS combustion process, it was possible to detect a non-spherical and highly wrinkled blue flame, coupled with yellow diffusive flames due to the combustion of rich zones near the spark plug. The initial flame spread for both PFS cases was faster compared to any of the well-mixed cases (lean, stoichiometric and rich), suggesting that the flame propagation for PFS is enhanced by both enrichment and enhanced local turbulence caused by the pilot injection. Different spray evolutions for the two pilot injection durations were found to strongly influence the flame kernel inception and propagation. PFS with pilot durations of 210 μs and 330 μs showed some differences in terms of shapes of the flame front and in terms of extension of diffusive flames. Yet, both cases were highly repeatable.

More Details

Ability of Particulate Matter Index to describe sooting tendency of various gasoline formulations in a stratified-charge spark-ignition engine

Proceedings of the Combustion Institute

Kim, Namho K.; Vuilleumier, David; He, Xu; Sjoberg, Carl M.

The ability of particulate matter index (PMI) to describe the sooting behavior of various gasoline formulations in a stratified-charge (SC) spark-ignition engine was studied. The engine was operated at 2000 rpm with an intake pressure of 130 kPa where soot formation is known to primarily occur in the bulk gases. Exhaust soot emissions were measured for nine test fuels at various exhaust gas recirculation levels. A comparison between measured soot levels and PMI showed that PMI is a relatively poor predictor of the sooting tendency of the tested fuels under lean SC combustion. Among the fuels, the diisobutylene blend, high olefin, and E30 fuels exhibited measured soot behavior opposite of that predicted by PMI. Optical diagnostics were utilized to further investigate the in-cylinder phenomena for these three fuels. Analysis of natural luminosity and diffused back-illumination extinction imaging indicated that fuel-induced differences in the amount of soot formed are responsible for a majority of the discrepancy in measured versus predicted sooting tendency. Fuel-induced differences in soot oxidation and spray development seem to play minor roles. Because the combustion and air-fuel mixing processes for lean SC combustion are different from conventional stoichiometric operation, it was hypothesized that the PMI correlation needs to be modified to account for differences in stoichiometric air-fuel ratio and level of oxygenation between fuels. Furthermore, the role of fuel volatility in PMI possibly needs to be de-emphasized for SC operation with fuel injection into compression-heated gases.

More Details

The use of partial fuel stratification to enable stable ultra-lean deflagration-based Spark-Ignition engine operation with controlled end-gas autoignition of gasoline and E85

International Journal of Engine Research

Hu, Zongjie; Zhang, Junjie; Sjoberg, Carl M.; Zeng, Wei

Lean operation of Spark-Ignition engines can provide higher thermal efficiency compared to standard stoichiometric operation. However, for a homogeneous lean mixture, the associated reduction of flame speeds becomes an important issue from the perspective of robust ignition and fast flame spread throughout the charge. This study is focused on the use of a lean partial fuel stratification strategy that can stabilize the deflagration, while sufficiently fast combustion is ensured via the use of end-gas autoignition. The engine has a spray-guided Direct-Injection Spark-Ignition combustion system and was fueled with either a high-octane certification gasoline or E85. Partial fuel stratification was achieved using several fuel injections during the intake stroke in combination with a small pilot-injection concurrent with the Spark-Ignition. The results reveal that partial fuel stratification enables very stable combustion, offering higher thermal efficiency for parts of the load range in comparison to well-mixed lean and stoichiometric combustion. The heat release and flame imaging demonstrate that the combustion often has three distinct stages. The combustion of the pilot-injected fuel, ignited by the normal spark, acts as a “super igniter,” ensuring a very repeatable initiation of combustion, and flame incandescence reveals locally rich conditions. The second stage is mainly composed of blue flame propagation in a well-mixed lean mixture. The third stage is the compression autoignition of a well-mixed and typically very lean end-gas. The end-gas autoignition is critical for achieving high combustion efficiency, high thermal efficiency, and stable combustion. Partial fuel stratification enables very effective combustion-phasing control, which is critical for controlling the occurrence and intensity of end-gas autoignition. Comparing the gasoline and E85 fuels, it is noted that achieving end-gas autoignition for the higher octane E85 requires a more aggressive compression of the end-gas via the use of a more advanced combustion phasing or higher intake-air temperature.

More Details

Ability of Particulate Matter Index to describe sooting tendency of various gasoline formulations in a stratified-charge spark-ignition engine

Proceedings of the Combustion Institute

Kim, Namho K.; Vuilleumier, David V.; He, Xu H.; Sjoberg, Carl M.

This study investigates the ability of Particulate Matter Index (PMI) to describe the sooting behavior of various gasoline formulations in a stratified-charge (SC) spark-ignition engine. Specifically, the engine was operated at 2000 rpm with an intake pressure of 130 kPa where soot formation is known to primarily occur in the bulk gases. Exhaust soot emissions were measured for nine test fuels at various exhaust gas recirculation levels. A comparison between measured soot levels and PMI shows that PMI is a relatively poor predictor of the sooting tendency of the tested fuels under lean SC combustion. Among the fuels, three fuels, namely the diisobutylene blend, High Olefin, and E30 fuels exhibit measured soot behavior opposite of that predicted by PMI. Optical diagnostics were utilized to further investigate the in-cylinder phenomena for these three fuels. Analysis of natural luminosity and diffused back-illumination extinction imaging suggests that fuel-induced differences in the amount of soot formed are responsible for a majority of the discrepancy in measured versus predicted sooting tendency. Fuel-induced differences in soot oxidation and spray development seem to play minor roles. Because the combustion and air-fuel mixing processes for lean SC combustion are different from conventional stoichiometric operation it is hypothesized that the PMI correlation needs to be modified to account for differences in stoichiometric air-fuel ratio and level of oxygenation between fuels. Furthermore, the role of fuel volatility in PMI possibly needs to be de-emphasized for SC operation with fuel injection into compression-heated gases.

More Details

Using chemical kinetics to understand effects of fuel type and compression ratio on Knock-Mitigation effectiveness of various EGR constituents

SAE Technical Papers

Kim, Namho K.; Vuilleumier, David V.; Sjoberg, Carl M.; Yokoo, Nozomi; Tomoda, Terutoshi; Nakata, Koichi

Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise. To model the effects of thermal stratification due to heat-transfer losses to the combustion-chamber walls, the initial temperature at the start of the CHEMKIN simulation was successively reduced below the adiabatic core temperature while observing changes in end-gas heat release and its effect on the reactant temperature. The results reveal that knock-prone conditions generally exhibit an increased amount of heat release in the colder temperature zones, thus counteracting the HRR-smoothing effect of the naturally occurring thermal stratification. This detrimental effect becomes more pronounced for the low-S fuel due to its significant Negative Temperature Coefficient (NTC) autoignition characteristics. This explains the generally reduced effectiveness of dilution for the low-S fuel, and higher knock intensity for the cycles with autoignition.

More Details

Fuel film thickness measurements using refractive index matching in a stratified-charge SI engine operated on E30 and alkylate fuels

Experiments in Fluids

Ding, Carl P.; Sjoberg, Carl M.; Vuilleumier, David V.; Reuss, David L.; He, Xu; Böhm, Benjamin

This study shows fuel film measurements in a spark-ignited direct injection engine using refractive index matching (RIM). The RIM technique is applied to measure the fuel impingement of a high research octane number gasoline fuel with 30 vol% ethanol content at two intake pressures and coolant temperatures. Measurements are conducted for an alkylate fuel at one operating case, as well. It is shown that the fuel volume on the piston surface increases for lower intake pressure and lower coolant temperature and that the alkylate fuel shows very little spray impingement. The fuel films can be linked to increased soot emissions. A detailed description of the calibration technique is provided and measurement uncertainties are discussed. The dependency of the RIM signal on refractive index changes is measured. The RIM technique provides quantitative film thickness measurements up to 0.9 µm in this engine. For thicker films, semi-quantitative results of film thickness can be utilized to study the distribution of impinged fuel.

More Details

Advanced Light-Duty SI Engine Fuels Research: Multiple Optical Diagnostics of Well-mixed and Stratified Operation

Sjoberg, Carl M.; Vuilleumier, David V.

Ever tighter fuel economy standards and concerns about energy security motivate efforts to improve engine efficiency and to develop alternative fuels. This project contributes to the science base needed by industry to develop highly efficient direct injection spark ignition (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, the focus is on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness of combustion but this technique has soot and NOx emissions challenges. For ultra-lean well-mixed operation, turbulent deflagration can be combined with controlled end-gas autoignition to render mixed-mode combustion for sufficiently fast heat release. However, such mixed-mode combustion requires very stable inflammation, motivating studies on the effects of near-spark flow and turbulence, and the use of small amounts of fuel stratification near the spark plug.

More Details

Alternative Fuels DISI Engine Research ? Autoignition Metrics

Sjoberg, Carl M.; Vuilleumier, David V.

Improved engine efficiency is required to comply with future fuel economy standards. Alternative fuels have the potential to enable more efficient engines while addressing concerns about energy security. This project contributes to the science base needed by industry to develop highly efficient direct injection spark igniton (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on quantifying autoignition behavior for a range of spark-ignited engine conditions, including directly injected boosted conditions. The efficiency of stoichiometrically operated spark ignition engines is often limited by fuel-oxidizer end-gas autoignition, which can result in engine knock. A fuel’s knock resistance is assessed empirically by the Research Octane Number (RON) and Motor Octane Number (MON) tests. By clarifying how these two tests relate to the autoignition behavior of conventional and alternative fuel formulations, fuel design guidelines for enhanced engine efficiency can be developed.

More Details

Combined effects of intake flow and spark-plug location on flame development, combustion stability and end-gas autoignition for lean spark-ignition engine operation using E30 fuel

International Journal of Engine Research

Sjoberg, Carl M.; He, Xu

Lean or dilute spark-ignition engine operation can provide efficiency improvements relative to that of traditional well-mixed stoichiometric spark-ignition operation. However, to maintain a sufficiently short burn duration with the direct-injection spark-ignition engine hardware of the current study, mixed-mode combustion is required for operation with ϕ < 0.6. Such mixed-mode combustion uses a combination of deflagration and end-gas autoignition whereby the pressure rise of the deflagration-based combustion compresses the end-gas reactants to the point of autoignition. For better understanding of the transition from deflagration to autoignition, it is desirable to apply optical diagnostics. However, with the use of a single centrally located spark plug, the end-gas is found at the periphery of the combustion chamber, where it is difficult to examine optically. To overcome this, two additional spark plugs were mounted in the pent-roof gables (called East and West). Performance testing was performed for five different spark strategies: Central Only, East-West, ALL Three, East Only, and West Only. The five spark strategies are combined with swirl or no-swirl operation for a total of 10 ϕ-sweeps. A high-octane E30 fuel is used here, and intake heating is used to promote both lean combustion stability and end-gas autoignition. The best lean combustion stability is found for the ALL Three spark strategy, followed by the East-West and Central spark strategies, enabling stable mixed-mode spark-ignition combustion for ϕ down to 0.50 and 0.55, respectively. Here, operation without swirl provides the most stable combustion. High-speed imaging of ultra-lean operation without swirl at ϕ = 0.55 using the East-West spark strategy reveals that the transition from deflagration to end-gas autoignition frequently occurs within the view offered by the small piston-bowl window. These results encourage future optical investigations of fuel effects on this transition process, but a larger piston-bowl window is recommended.

More Details

Effects of EGR Constituents and Fuel Composition on DISI Engine Knock: An Experimental and Modeling Study

SAE Technical Papers

Vuilleumier, David V.; Kim, Namho K.; Sjoberg, Carl M.; Yokoo, Nozomi; Tomoda, Terutoshi; Nakata, Koichi

The use of exhaust gas recirculation (EGR) in spark ignition engines has been shown to have a number of beneficial effects under specific operating conditions. These include reducing pumping work under part load conditions, reducing NOx emissions and heat losses by lowering peak combustion temperatures, and by reducing the tendency for engine knock (caused by end-gas autoignition) under certain operating regimes. In this study, the effects of EGR addition on knocking combustion are investigated through a combined experimental and modeling approach. The problem is investigated by considering the effects of individual EGR constituents, such as CO2, N2, and H2O, on knock, both individually and combined, and with and without traces species, such as unburned hydrocarbons and NOx. The effects of engine compression ratio and fuel composition on the effectiveness of knock suppression with EGR addition were also investigated. A parametric, experimental matrix of diluents, compression ratio, and fuels was tested to measure knock-limited combustion phasing of each combination. The resulting knock limits were evaluated in the context of thermodynamic effects on the closed cycle, chemical interactions between the EGR constituents and the fuel-oxidizer mixture, and the effect of altered pressure-temperature trajectories on fuel-autoignition behavior. This paper provides an overview of the experimental results, and uses chemical-kinetic modeling to investigate the behavior of a particular fuel - diluent combination which had a strong sensitivity to compression ratio variation. The numerical results shed light on the complex interactions between fuel chemistry, the engine's thermodynamic cycle, and the effect of residence times on the autoignition chemistry which leads to knock. An important and fuel-dependent role of thermal stratification in the end-gas is also suggested by the chemical-kinetics modeling of the experimentally observed knock limits.

More Details

Uncertainty Assessment of Octane Index Framework for Stoichiometric Knock Limits of Co-Optima Gasoline Fuel Blends

SAE International Journal of Fuels and Lubricants

Vuilleumier, David V.; Huan, Xun H.; Casey, Tiernan A.; Sjoberg, Carl M.

This study evaluates the applicability of the Octane Index (OI) framework under conventional spark ignition (SI) and “beyond Research Octane Number (RON)” conditions using nine fuels operated under stoichiometric, knock-limited conditions in a direct injection spark ignition (DISI) engine, supported by Monte Carlo-type simulations which interrogate the effects of measurement uncertainty. Of the nine tested fuels, three fuels are “Tier III” fuel blends, meaning that they are blends of molecules which have passed two levels of screening, and have been evaluated to be ready for tests in research engines. These molecules have been blended into a four-component gasoline surrogate at varying volume fractions in order to achieve a RON rating of 98. The molecules under consideration are isobutanol, 2-butanol, and diisobutylene (which is a mixture of two isomers of octene). The remaining six fuels were research-grade gasolines of varying formulations. The DISI research engine was used to measure knock limits at heated and unheated intake temperature conditions, as well as throttled and boosted intake pressures, all at an engine speed of 1400 rpm. The tested knock-limited operating conditions conceptually exist both between the Motor Octane Number (MON) and RON conditions, as well as “beyond RON” conditions (conditions which are conceptually at lower temperatures, higher pressures, or longer residence times than the RON condition). In addition to directly assessing the performance of the Tier III blends relative to other gasolines, the OI framework was evaluated with considerations of experimental uncertainty in the knock-limited combustion phasing (KL-CA50) measurements, as well as RON and MON test uncertainties. The OI was found to hold to the first order, explaining more than 80% of the knock-limited behavior, although the remaining variation in fuel performance from OI behavior was found to be beyond the likely experimental uncertainties. This indicates that the effects of specific fuel components on knock which are not captured by RON and MON ratings, and complicating the assessment of a given fuel by RON and MON ratings alone.

More Details

Significance of RON, MON, and LTHR for Knock Limits of Compositionally Dissimilar Gasoline Fuels in a DISI Engine

SAE International Journal of Engines

Vuilleumier, David V.; Sjoberg, Carl M.

Spark-ignition (SI) engine efficiency is typically limited by fuel auto-ignition resistance, which is described in practice by the Research Octane Number (RON) and the Motor Octane Number (MON). The goal of this work is to assess whether fuel properties (i.e. RON, MON, and heat of vaporization) are sufficient to describe the antiknock behavior of varying gasoline formulations in modern engines. To this end, the auto-ignition resistance of three compositionally dissimilar gasoline-like fuels with identical RON values and varying or non-varying MON values were evaluated in a modern, prototype, 12:1 compression ratio, high-swirl (by nature of intake valve deactivation), directly injected spark ignition (DISI) engine at 1400 RPM. The three gasolines are an alkylate blend (RON=98, MON=97), a blend with high aromatic content (RON=98, MON=88), and a blend of 30% ethanol by volume with a gasoline BOB (RON=98, MON=87; see Table 2 for details). The preliminary findings of this work are that RON and MON, when coupled with latent heat of vaporization information, are sufficient to describe the auto-ignition resistance of a fuel to a degree such that knock-limited combustion phasing shows no measurable differences. While the tested fuels yielded no inconsistencies between their ratings (RON and MON) and properties (latent heat of vaporization) and their performance in a DISI engine, measurable differences were found among the three tested fuels. Specifically, the manner in which the fuels obtained knock-resistance varied, be it through thermal tolerance, charge cooling, or lack of charge-heating Low-Temperature Heat Release (LTHR). In addition, the fuels’ knock-limited combustion phasing responses to variations in intake pressure and intake temperature varied with their thermal tolerance and tendency towards LTHR. Yet these dissimilar behaviors combine to produce similar anti-knock qualities and engine performance for naturally-aspirated operation.

More Details

The Use of Transient Operation to Evaluate Fuel Effects on Knock Limits Well beyond RON Conditions in Spark-Ignition Engines

SAE Technical Papers

Vuilleumier, David V.; Sjoberg, Carl M.

Fundamental engine research is primarily conducted under steady-state conditions, in order to better describe boundary conditions which influence the studied phenomena. However, light-duty automobiles are operated, and tested, under heavily transient conditions. This mismatch between studied conditions and in-use conditions is deemed acceptable due to the fundamental knowledge gained from steady-state experiments. Nonetheless, it is useful to characterize the conditions encountered during transient operation and determine if the governing phenomena are unduly influenced by the differences between steady-state and transient operation, and further, whether transient behavior can be reasonably extrapolated from steady-state behavior. The transient operation mode used in this study consists of 20 fired cycles followed by 80 motored cycles, operating on a continuous basis. The intention of the cycle is to provide a significant transient condition, namely the change from motored to knock-limited fired operation, while also maintaining a repeatable cycle that allows for the collection of statistics during quasi- steady-state operation. This study investigates the effect of transient operation on Knock-Limited Combustion Phasing (KL-CA50) compared to steady-state operation. Three compositionally dissimilar matched Research Octane Number (RON) = 98 fuels are used in this study, allowing for the assessment of fuel-specific effects on differences between steady-state and transient operation. This study first characterizes the 20/80 firing cycle described above, before comparing the transient KL-CA50 measurements to the steady-state KL-CA50 measurements. Analysis of both the steady-state and transient results are used to gain insights into the effects of transient operation on end-gas autoignition, relative to steady-state operation and as a function of fuel composition. The results of this study indicate the significant effect that transient operation has on KL-CA50 behavior of a fuel. This is both universal, in that all fuels show responses to the differences in compression temperatures of the charge, as well as fuel specific, in that the fuel response varies based on the fuel's sensitivity to temperature, [O2], and trace species. All fuels showed a significant load extension under transient operation, based on tolerance of higher intake pressures. However, transient operation moved operating conditions to "beyond RON" (Octane Index K < 0) conditions, which favored higher-sensitivity fuels. Based on the analysis of system time constants (e.g. cylinder head temperature dynamic response, exhaust gas temperature dynamic response), it is expected that transient operation, and the benefits for knock-limited operation, are highly influential on drive-cycle performance.

More Details

The role of spray-enhanced swirl flow for combustion stabilization in a stratified-charge DISI engine

Combustion and Flame

Zeng, Wei; Sjoberg, Carl M.; Reuss, David L.; Hu, Zongjie

Implementation of spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustion repeatability from cycle to cycle.The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum.This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. In contrast, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel-air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.

More Details

Combined Effects of Fuel and Dilution Type on Efficiency Gains of Lean Well-Mixed DISI Engine Operation with Enhanced Ignition and Intake Heating for Enabling Mixed-Mode Combustion

SAE International Journal of Engines

Sjoberg, Carl M.; Zeng, Wei

Well-mixed lean or dilute SI engine operation can provide efficiency improvements relative to that of traditional well-mixed stoichiometric SI operation. However, the realized gains depend on the ability to ensure stable, complete and fast combustion. In this work, the influence of fuel type is examined for gasoline, E30 and E85. Several enabling techniques are compared. For enhanced ignition stability, a multi-pulse (MP) transient plasma ignition system is compared to a conventional high-energy inductive spark ignition system. Combined effects of fuel type and intake-gas preheating are examined. Also, the effects of dilution type (air or N2-simulated EGR) on lean efficiency gains and stability limits are clarified. The largest efficiency improvement is found for lean gasoline operation using intake preheating, showing the equivalent of a 20% fuel-economy gain relative to traditional non-dilute stoichiometric operation. The reason for gasoline’s larger efficiency improvement is its lower octane number which facilitates the use of end-gas autoignition to produce mixed-mode combustion. For these conditions, such mixed-mode combustion is required for rapid completion of the inherently slow lean combustion event prior to piston expansion. The fuel-economy gains are somewhat smaller for both E30 and E85 because of higher resistance to end-gas autoignition under lean conditions. To avoid knocking cycles when mixed-mode combustion is used, the deflagration-based combustion must be very repeatable to ensure consistent compression of the end-gas reactants. Multi-pulse transient plasma ignition is used beneficially to stabilize the combustion, especially for dilute operation which suffers from low flame speeds. However, even with an enhanced ignition system, the best fuel-economy gains of dilute stoichiometric operation with mixed-mode combustion are on the order of 11-12%, which is substantially less than for lean operation.

More Details

FY2015 Annual Report for Alternative Fuels DISI Engine Research

Sjoberg, Carl M.

Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness of combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.

More Details

Understanding fuel anti-knock performances in modern SI engines using fundamental HCCI experiments

Combustion and Flame

Yang, Yi; Dec, John E.; Sjoberg, Carl M.; Ji, Chunsheng

Modern spark-ignition (SI) engine technologies have considerably changed in-cylinder conditions under which fuel autoignition and engine knock take place. In this paper, fundamental HCCI engine experiments are proposed as a means for characterizing the impact of these technologies on the knock propensity of different fuels. In particular, the impacts of turbocharging, direct injection (DI), and downspeeding on operation with ethanol and gasoline are investigated to demonstrate this approach. Results reported earlier for ethanol and gasoline on HCCI combustion are revisited with the new perspective of how their autoignition characteristics fit into the anti-knock requirement in modern SI engines. For example, the weak sensitivity to pressure boost demonstrated by ethanol in HCCI autoignition can be used to explain the strong knock resistance of ethanol fuels for turbocharged SI engines. Further, ethanol's high sensitivity to charge temperature makes charge cooling, which can be produced by fuel vaporization via direct injection or by piston expansion via spark-timing retard, very effective for inhibiting knock. On the other hand, gasoline autoignition shows a higher sensitivity to pressure, so only very low pressure boost can be applied before knock occurs. Gasoline also demonstrates low temperature sensitivity, so it is unable to make as effective use of the charge cooling produced by fuel vaporization or spark retard. These arguments comprehensively explain literature results on ethanol's substantially better anti-knock performance over gasoline in modern turbocharged DISI engines. Fundamental HCCI experiments such as these can thus be used as a diagnostic and predictive tool for knock-limited SI engine performance for various fuels. Examples are presented where HCCI experiments are used to identify biofuel compounds with good potential for modern SI-engine applications.

More Details

Combined effects of flow/spray interactions and EGR on combustion variability for a stratified DISI engine

Proceedings of the Combustion Institute

Zeng, Wei; Sjoberg, Carl M.; Reuss, David L.

This study investigates combustion variability of a stratified-charge direct-injection spark ignited (DISI) engine, operated with near-TDC injection of E70 fuel and a spark timing that occurs during the early part of the fuel injection. Using EGR, low engine-out NOx can be achieved, but at the expense of increased combustion variability at higher engine speeds. Initial motored tests at different speeds reveal that the in-cylinder gas flow becomes sufficiently strong at 2000 rpm to cause significant cycle-to-cycle variations of the spray penetration. Hence, the fired tests focus on operation at 2000 rpm with N2 dilution ([O2] = 19% and 21%) to simulate EGR. In-cylinder flow, spray, and early-flame measurements are correlated to reveal their effect on the combustion variability. Results reveal two types of flow/spray-interactions that predict the likelihood of a partial burn. (1) Proper flow direction before injection with a more collapsed spray leads to high kinetic energy of the flow during injection, thus generating a rapid early burn, which ensures complete combustion, regardless of the EGR level. (2) Improper flow direction and less collapsed spray generate low flow energy during the early phase of combustion. For this second type of flow/spray-interaction, application of EGR results in a partial-burn frequency of 30%, whereas without EGR, early combustion is shown to be insensitive to flow variations. Flame-probability maps illustrate that the partial-burn cycles for operation with EGR have a weak flame development in that the flame does not develop uniformly and reliably from the spark plug. Without EGR, the flame development is more repeatable regardless of the type of flow/spray-interaction, at the expense of higher NOx emissions.

More Details

Annual Report FY2014 Alternative Fuels DISI Engine Research

Sjoberg, Carl M.

Due to concerns about future petroleum supply and accelerating climate change, increased engine efficiency and alternative fuels are of interest. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Lean operation is studied since it can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, focus is on techniques that can overcome these challenges. Specifically, fuel stratification can be used to ensure ignition and completeness of combustion, but may lead to soot and NOx emissions challenges. Advanced ignition system and intake air preheating both promote ignition stability. Controlled end-gas autoignition can be used maintain high combustion efficiency for ultra-lean well-mixed conditions. However, the response of both combustion and exhaust emission to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the combustion-control strategies of the engine must adopt to the fuel being utilized.

More Details

Combined Effects of Multi-Pulse Transient Plasma Ignition and Intake Heating on Lean Limits of Well-Mixed E85 DISI Engine Operation

SAE International Journal of Engines

Sjoberg, Carl M.; Zeng, Wei; Singleton, Daniel; Sanders, Jason M.; Gundersen, Martin A.

Well-mixed lean SI engine operation can provide improvements of the fuel economy relative to that of traditional well-mixed stoichiometric SI operation. This work examines the use of two methods for improving the stability of lean operation, namely multi-pulse transient plasma ignition and intake air preheating. These two methods are compared to standard SI operation using a conventional high-energy inductive ignition system without intake air preheating. E85 is the fuel chosen for this study. The multi-pulse transient plasma ignition system utilizes custom electronics to generate 10 kHz bursts of 10 ultra-short (12ns), high-amplitude pulses (200 A). These pulses were applied to a custom spark plug with a semi-open ignition cavity. High-speed imaging reveals that ignition in this cavity generates a turbulent jet-like early flame spread that speeds up the transition from ignition to the main combustion event. Performance testing shows that lean operation with heated intake air enables a 17% improvement of fuel economy at ϕ = 0.59 for both ignition systems, relative to that of stoichiometric operation. Moreover, multi-pulse transient plasma ignition offers more stable ultra-lean operation, with IMEPn variability less than 5% down to ϕ = 0.49. The ability to operate stably at such lean conditions is attributed to a more stable flame initiation offered by both the increased charge temperature and the multi-pulse transient plasma ignition that allows a later spark timing due to the very fast transition to fully turbulent deflagration.

More Details

Using PIV Measurements to Determine the Role of the In-Cylinder Flow Field for Stratified DISI Engine Combustion

SAE International Journal of Engines

Zeng, Wei; Sjoberg, Carl M.; Reuss, David

In a companion study [1], experimental observations in a stratified-charge DISI engine operated with late injection of E70 led to the formation of two hypotheses: (1) For highly stratified spray-guided combustion, the heat-release rate of the main combustion phase is primarily controlled by mixing rates and turbulence level associated with fuel-jet penetration. (2) During the main combustion phase, the role of the in-cylinder flow field generated by the intake and compression strokes is primarily its stochastic disturbance of the mixing and flow associated with the fuel jets, thereby causing cycle-to-cycle variations of the spray-guided stratified combustion. Here, these hypotheses are tested. An optical engine was operated skip fired at 1000 and 2000 rpm, and exhibited the same combustion properties observed in the steady-state all-metal engine tests. High-speed particle image velocimetry (PIV) and spray imaging are used to quantify the intake-generated in-cylinder flow momentum, the spray induced momentum, and the resulting liquid spray variability. The PIV measurements reveal that the spatially-averaged gas-flow speed (momentum) without injection at 2000 rpm is twice that of 1000 rpm. In contrast, just after injection the gas flow spatial average speed at 2000 rpm is only 24% higher due to the dominance of spray momentum. This is comparable to the 16% increase of the measured ensemble-averaged heat-release rate (in kW). The cyclic variability of the in-cylinder flow speed prior to injection is measured to be considerably higher at 2000 rpm compared to 1000 rpm. Though the injected liquid spray reduced the flow-speed cyclic-variability after injection, the higher variability did persist. The spray imaging reveals that the increased flow-speed variability at 2000 rpm causes increased variability of the spray jet trajectory, jet coalescence, and spray rotation from cycle to cycle. This work supports both the hypotheses that motivated this study. Copyright © 2014 SAE International.

More Details

Smoothing HCCI Heat Release with Vaporization-Cooling-Induced Thermal Stratification using Ethanol

SAE International Journal of Fuels and Lubricants

Sjoberg, Carl M.; Dec, John E.

Ethanol and ethanol/gasoline blends are being widely considered as alternative fuels for light-duty automotive applications. At the same time, HCCI combustion has the potential to provide high efficiency and ultra-low exhaust emissions. However, the application of HCCI is typically limited to low and moderate loads because of unacceptably high heat-release rates (HRR) at higher fueling rates. This work investigates the potential of lowering the HCCI HRR at high loads by using partial fuel stratification to increase the in-cylinder thermal stratification. This strategy is based on ethanol's high heat of vaporization combined with its true single-stage ignition characteristics. Using partial fuel stratification, the strong fuel-vaporization cooling produces thermal stratification due to variations in the amount of fuel vaporization in different parts of the combustion chamber. The low sensitivity of the autoignition reactions to variations of the local fuel concentration allows the temperature variations to govern the combustion event. This results in a sequential autoignition event from leaner and hotter zones to richer and colder zones, lowering the overall combustion rate compared to operation with a uniform fuel/air mixture. The amount of partial fuel stratification was varied by adjusting the fraction of fuel injected late to produce stratification, and also by changing the timing of the late injection. The experiments show that a combination of 60 -70% premixed charge and injection of 30 -40 % of the fuel at 80°CA before TDC is effective for smoothing the HRR. With CA50 held fixed, this increases the burn duration by 55% and reduces the maximum pressure-rise rate by 40%. Combustion stability remains high but engine-out NO x has to be monitored carefully. For operation with strong reduction of the peak HRR, ISNO x rises to around 0.20 g/kWh for an IMEP g of 440 kPa. The single-cylinder HCCI research engine was operated naturally aspirated without EGR at 1200 rpm, and had low residual level using a CR = 14 piston. © 2011 Society of Automotive Engineers of Japan, Inc. and SAE International.

More Details

Partial Fuel Stratification to Control HCCI Heat Release Rates: Fuel Composition and Other Factors Affecting Pre-Ignition Reactions of Two-Stage Ignition Fuels

SAE International Journal of Engines

Yang, Yi Y.; Dec, John E.; Dronniou, Nicolas D.; Sjoberg, Carl M.; Cannella, William

Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock. This study focuses on three factors, engine speed, intake temperature, and fuel composition, that can affect the pre-ignition processes of two-stage fuels and consequently affect their performance with partial fuel stratification. A model fuel consisting of 73 vol.% isooctane and 27 vol.% of n-heptane (PRF73), which was previously compared against neat isooctane to demonstrate the superior performance of two-stage fuels over single-stage fuels with partial fuel stratification, was first used to study the effects of engine speed and intake temperature. The results for PRF73 show that increasing engine speed from 1200 to 1600 rpm causes almost no change in φ-sensitivity, which is defined by the advancement of combustion phasing for an increase in equivalence ratio. Consequently, the maximum combustion pressure rise rate (PRRmax) can be reduced substantially with partial fuel stratification at this higher speed as it was at 1200 rpm. In contrast, increasing intake temperature from 60°C to 174°C eliminates the low temperature heat release of PRF73. Despite the single-stage ignition at this temperature, PRF73 still shows a weak but definitive φ-sensitivity, likely due to the relatively strong intermediate temperature heat release before hot ignition. As a result, PRR max was reduced modestly with partial fuel stratification. This PRF73 result is distinctively different from that of isooctane at the same intake temperature. To study the importance of fuel composition, PRF73 is compared with a low-octane, gasoline-like distillate fuel, termed Hydrobate, which could be readily produced from petroleum feedstocks. With the similar HCCI reactivity to PRF73, Hydrobate shows little difference in φ-sensitivity and performs similarly with partial fuel stratification compared to PRF73. This result indicates that it is the overall fuel HCCI reactivity, rather than the exact fuel composition, that determines the φ-sensitivity and the consequent performance with partial fuel stratification. © 2011 SAE International.

More Details

Smoothing HCCI heat release with vaporization-cooling-induced thermal stratification using ethanol

Sjoberg, Carl M.; Dec, John E.

Ethanol and ethanol/gasoline blends are being widely considered as alternative fuels for light-duty automotive applications. At the same time, HCCI combustion has the potential to provide high efficiency and ultra-low exhaust emissions. However, the application of HCCI is typically limited to low and moderate loads because of unacceptably high heat-release rates (HRR) at higher fueling rates. This work investigates the potential of lowering the HCCI HRR at high loads by using partial fuel stratification to increase the in-cylinder thermal stratification. This strategy is based on ethanol's high heat of vaporization combined with its true single-stage ignition characteristics. Using partial fuel stratification, the strong fuel-vaporization cooling produces thermal stratification due to variations in the amount of fuel vaporization in different parts of the combustion chamber. The low sensitivity of the autoignition reactions to variations of the local fuel concentration allows the temperature variations to govern the combustion event. This results in a sequential autoignition event from leaner and hotter zones to richer and colder zones, lowering the overall combustion rate compared to operation with a uniform fuel/air mixture. The amount of partial fuel stratification was varied by adjusting the fraction of fuel injected late to produce stratification, and also by changing the timing of the late injection. The experiments show that a combination of 60-70% premixed charge and injection of 30-40 % of the fuel at 80{sup o}CA before TDC is effective for smoothing the HRR. With CA50 held fixed, this increases the burn duration by 55% and reduces the maximum pressure-rise rate by 40%. Combustion stability remains high but engine-out NO{sub x} has to be monitored carefully. For operation with strong reduction of the peak HRR, ISNO{sub x} rises to around 0.20 g/kWh for an IMEP{sub g} of 440 kPa. The single-cylinder HCCI research engine was operated naturally aspirated without EGR at 1200 rpm, and had low residual level using a CR = 14 piston.

More Details

Ethanol autoignition characteristics and HCCI performance for wide ranges of engine speed, load and boost

SAE International Journal of Engines

Sjoberg, Carl M.; Dec, John E.

The characteristics of ethanol autoignition and the associated HCCI performance are examined in this work. The experiments were conducted over wide ranges of engine speed, load and intake boost pressure (P in) in a single- cylinder HCCI research engine (0.98 liters) with a CR = 14 piston. The data show that pure ethanol is a true single-stage ignition fuel. It does not exhibit low-temperature heat release (LTHR), not even for boosted operation. This makes ethanol uniquely different from conventional distillate fuels and offers several benefits: a) The intake temperature (T in) does not have to be adjusted much with changes of engine speed, load and intake boost pressure. b) High P in can be tolerated without running out of control authority because of an excessively low T in requirement. However, by maintaining true single-stage ignition characteristics, ethanol also shows a relatively low temperature-rise rate just prior to its hot ignition point. Therefore, ethanol does not tolerate as much combustion-phasing retard as fuels that exhibit LTHR and/or pronounced intermediate-temperature heat release. Since combustion retard is important for avoiding excessive pressure-rise rates, the distinct single-stage ignition characteristic of ethanol can be considered a drawback when reaching for higher loads. Nonetheless, an IMEP g of 11.3 bar was demonstrated for P in = 247 kPa. Finally, the latest ethanol chemical-kinetics mechanism from the National University of Ireland - Galway was evaluated against the experimental engine data using a multi-zone model. Overall, the mechanism performs very well over wide ranges of operating conditions. © 2010 SAE International.

More Details

Influence of EGR quality and unmixedness on the high-load limits of HCCI engines

SAE International Journal of Engines

Sjoberg, Carl M.; Dec, John E.

This work explores how the high-load limits of HCCI are affected by fuel autoignition reactivity, EGR quality/composition, and EGR unmixedness for naturally aspirated conditions. This is done for PRF80 and PRF60. The experiments were conducted in a singlecylinder HCCI research engine (0.98 liters) with a CR = 14 piston installed. By operating at successively higher engine loads, five load-limiting factors were identified for these fuels: 1) Residual-NOx-induced run-away advancement of the combustion phasing, 2) EGR-NOx- induced run-away, 3) EGR-NOx/wall-heating induced run-away 4) EGR-induced oxygen deprivation, and 5) excessive partial-burn occurrence due to EGR unmixedness. The actual load-limiting factor is dependent on the autoignition reactivity of the fuel, the EGR quality level (where high quality refers to the absence of trace species like NO, HC and CO, i.e. simulated EGR), the level of EGR unmixedness, and the selected pressurerise rate (PRR). For a reactive fuel like PRF60, large amounts of EGR are required to control the combustion phasing. Therefore, for operation with simulated EGR, the maximum IMEP becomes limited by the available oxygen. When real EGR (with trace species) is used instead of the simulated EGR, the maximum IMEP becomes limited by EGR-NOx/wall-heating induced runaway. For the moderately reactive PRF80 operated with simulated EGR, the maximum IMEP becomes limited by residual-NOx-induced run-away. Furthermore, operation with real EGR lowers the maximum steady IMEP because of EGR-NOx-induced run-away. This is similar to PRF60. Finally, the data show that EGR/fresh-gas unmixedness can lead to a substantial reduction of the maximum stable IMEP for operation with a low PRR. This happens because the EGR unmixedness causes occasional partial-burn cycles due to excessive combustion-phasing retard for cycles that induct substantially higher-thanaverage level of EGR gases.

More Details

Detailed hcci exhaust speciation and the sources of hydrocarbon and oxygenated hydrocarbon emissions

SAE International Journal of Fuels and Lubricants

Dec, John E.; Davisson, M.L.; Sjoberg, Carl M.; Leif, Roald N.; Hwang, Wontae H.

Detailed exhaust speciation measurements were made on an HCCI engine fueled with iso-octane over a range of fueling rates, and over a range of fuel-stratification levels. Fully premixed fueling was used for the fueling sweep. This sweep extended from a fuel/air equivalence ratio (Φ{phonetic}) of 0.28, which is sufficiently high to achieve a combustion efficiency of 96%, down to a below-idle fueling rate of Φ{phonetic} = 0.08, with a combustion efficiency of only 55%. The stratification sweep was conducted at an idle fueling rate, using an 8-hole GDI injector to vary stratification from well-mixed conditions for an early start of injection (SOI) (40°CA) to highly stratified conditions for an SOI well up the compression stroke (325°CA, 35°bTDCcompression). The engine speed was 1200 rpm. At each operating condition, exhaust samples were collected and analyzed by GC-FID for the C1 and C2 hydrocarbon (HC) species and by GC-MS for all other species except formaldehyde and acetaldehyde. These two species were analyzed using high-performance liquid chromatography. In addition, standard emissions-bench exhaust analysis equipment was used to measure total HC, CO, CO2, O2, and NOX simultaneously with the sampling for the detailed-speciation analysis. Good overall agreement was found between the emissions-bench data and total HC from the detailed measurements. Unreacted fuel, iso-octane, was by far the most prevalent HC species at all operating conditions. Numerous other HC and oxygenated HC (OHC) species were found that could be identified as breakdown products of iso-octane. Several smaller HC and OHC species were also identified. At the highest Φ{phonetic}, emissions of all species were low, except iso-octane. As Φ{phonetic} was reduced, emissions of all species increased, but the rate of increase varied substantially for the different species. Analysis showed that these differences were related to the degree of breakdown from the parent fuel and the in-cylinder location where they formed. SOI-sweep results indicated that stratification improves combustion efficiency by reducing the fuel penetration to the crevice and cylinder-wall boundary-layer regions, as well as by creating a locally richer mixture that burns hotter and more completely.

More Details

Influence of fuel autoignition reactivity on the high-load limits of HCCI engines

SAE International Journal of Engines

Sjoberg, Carl M.; Dec, John E.

This work explores the high-load limits of HCCI for naturally aspirated operation. This is done for three fuels with various autoignition reactivity: iso-octane, PRF80, and PRF60. The experiments were conducted in a single-cylinder HCCI research engine (0.98 liter displacement), mostly with a CR = 14 piston installed, but with some tests at CR = 18. Five load-limiting factors were identified: 1) NOx-induced combustion-phasing run-away, 2) wall-heating-induced run-away, 3) EGR-induced oxygen deprivation, 4) wandering unsteady combustion, and 5) excessive exhaust NOx. These experiments at 1200 rpm show that the actual load-limiting factor is dependent on the autoignition reactivity of the fuel, the selected CA50, and in some cases, the tolerable level of NOx emissions. For iso-octane, which has the highest resistance to autoignition of the fuels tested, the NOx emissions become unacceptable at IMEPg = 473 kPa. This happens before wandering and unsteady combustion becomes an issue for IMEPg > 486 kPa. The NOx is caused by high peak-combustion temperatures resulting from the high intake temperature required for this low-reactivity fuel. Iso-octane operation with a CR = 18 piston reduces the intake-temperature requirement. Consequently, the exhaust NOx issue vanishes while the IMEPg can be increased to 520 kPa before wall-heating-induced run-away become an issue. For a very reactive fuel like PRF60, large amounts of EGR are required to control the combustion phasing. Therefore, the maximum IMEPg becomes limited at 643 kPa by the available oxygen as the EGR gases displace air. A fuel of intermediate reactivity, PRF80, exhibits the highest IMEPg for the conditions of this study - 651 kPa. For this fuel, the maximum IMEPg becomes limited by NOx-induced run-away. This happens because even small amounts of NOx recycled via residuals enhance the autoignition sufficiently to advance the ignition point. This leads to higher peak-combustion temperatures and more NOx formation, thus making a very rapid run-away situation inevitable.

More Details

Comparing late-cycle autoignition stability for single- and two-stage ignition fuels in HCCI engines

Proceedings of the Combustion Institute

Sjoberg, Carl M.; Dec, John E.

The characteristics of autoignition after top-dead-center (TDC) for both single- and two-stage ignition fuels have been investigated in a homogeneous charge compression ignition (HCCI) engine. The single-stage ignition fuel was iso-octane and the two-stage ignition fuel was PRF80 (80% iso-octane and 20% n-heptane). The results show that the heat-release rate and pressure-rise rate both decrease as the combustion is retarded later into the early expansion stroke. This is an advantage for high-load HCCI operation. However, for both fuel-types, cycle-to-cycle variations of the ignition and combustion phasing increase with combustion-phasing retard. Also, the cycle-to-cycle variations are higher for iso-octane compared to PRF80. These observations can be explained by considering the magnitude of random temperature fluctuation and the temperature-rise rate just prior to thermal run-away. Furthermore, too much combustionphasing retard leads to the appearance of partial-burn or misfire cycles, but the responses of the two fuels are quite different. The different behaviors can be explained by considering the thermal and chemical state of the residual exhaust gases that are recycled from one cycle to the next. The data indicate that a partialburn cycle with iso-octane produces residuals that increase the reactivity of the following cycle. However, for the already more reactive PRF80 fuel, the partial-burn products present in the residuals do not increase the reactivity enough to overcome the retarding effect of cool residual gases.

More Details

Effects of engine speed, fueling rate, and combustion phasing on the thermal stratification required to limit HCCI knocking intensity

Sjoberg, Carl M.; Dec, John E.

Thermal stratification has the potential to reduce pressure-rise rates and allow increased power output for HCCI engines. This paper systematically examines how the amount of thermal stratification of the core of the charge has to be adjusted to avoid excessive knock as the engine speed and fueling rate are increased. This is accomplished by a combination of multi-zone chemical-kinetics modeling and engine experiments, using iso-octane as the fuel. The experiments show that, for a low-residual engine configuration, the pressure traces are self-similar during changes to the engine speed when CA50 is maintained by adjusting the intake temperature. Consequently, the absolute pressure-rise rate measured as bar/ms increases proportionally with the engine speed. As a result, the knocking (ringing) intensity increases drastically with engine speed, unless counteracted by some means. This paper describes how adjustments of the thermal width of the in-cylinder charge can be used to limit the ringing intensity to 5 MW/m2 as both engine speed and fueling are increased. If the thermal width can be tailored without constraints, this enables smooth operation even for combinations of high speed, high load, and combustion phasing close to TDC. Since large alterations of the thermal width of the charge are not always possible, combustion retard is considered to reduce the requirement on the thermal stratification. The results show that combustion retard carries significant potential since it amplifies the benefit of a fixed thermal width. Therefore, the thermal stratification required for operation with an acceptable knocking intensity can be decreased substantially by the use of combustion retard. This enables combinations of high engine speed and high fueling rate even for operation with the naturally occurring thermal stratification. However, very precise control of the combustion phasing will likely be required for such operation.

More Details
106 Results
106 Results