Breaking Through the False Coincidence Barrier: Photoelectron Photoion Coincidence Spectroscopy for the Study of Elusive Free Radicals
Abstract not provided.
Abstract not provided.
Journal of Chemical Physics
Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ∼103 has largely precluded its use for this purpose, where a dynamic range of at least 105 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniform intensity at every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2-3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar9+, whereas Ar4+ is the largest observable cluster under traditional operation. This advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems.
This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte-interphase layer, and this cross-over can be modeled and predicted.
Abstract not provided.
Abstract not provided.
Advances in technology for electrochemical energy storage require increased understanding of electrolyte/electrode interfaces, including the electric double layer structure, and processes involved in charging of the interface, and the incorporation of this understanding into quantitative models. Simplified models such as Helmholtz's electric double-layer (EDL) concept don't account for the molecular nature of ion distributions, solvents, and electrode surfaces and therefore cannot be used in predictive, high-fidelity simulations for device design. This report presents theoretical results from models that explicitly include the molecular nature of the electrical double layer and predict critical electrochemical quantities such as interfacial capacitance. It also describes development of experimental tools for probing molecular properties of electrochemical interfaces through optical spectroscopy. These optical experimental methods are designed to test our new theoretical models that provide descriptions of the electric double layer in unprecedented detail.
Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.
Abstract not provided.
Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.
Langmuir
Conjugated polyelectrolytes (CPEs) are promising materials for generating optoelectronics devices under environmentally friendly processing conditions, but challenges remain to develop methods to define lateral features for improved junction interfaces and direct optoelectronic pathways. We describe here the potential to use a bottom-up approach that employs self-assembly in lipid membranes to form structures to template the selective adsorption of CPEs. Phase separation of gel phase anionic lipids and fluid phase phosphocholine lipids allowed the formation of negatively charged domain assemblies that selectively adsorb a cationic conjugated polyelectrolyte (P2). Spectroscopic studies found the adsorption of P2 to negatively charged membranes resulted in minimal structural change of the solution phase polymer but yielded an enhancement in fluorescence intensity (∼50%) due to loss of quenching pathways. Fluorescence microscopy, dynamic light scattering, and AFM imaging were used to characterize the polymer-membrane interaction and the polymer-bound domain structures of the biphasic membranes. In addition to randomly formed circular gel phase domains, we also show that predefined features, such as straight lines, can be directed to form upon etched patterns on the substrate, thus providing potential routes toward the self-organization of optoelectronic architectures. © 2013 American Chemical Society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Science
Abstract not provided.
Chemical Communications
Directing the orientation of molecular assemblies is a key step toward creating complex hierarchical structures that yield higher order functional materials. Here, we demonstrate the directed orientation of functionalized lipid domains and protein-membrane assemblies, using an electric field. © 2011 The Royal Society of Chemistry.
Abstract not provided.
Abstract not provided.
Langmuir
We demonstrate the construction of novel protein-lipid assemblies through the design of a lipid-like molecule, DPIDA, endowed with tail-driven affinity for specific lipid membrane phases and head-driven affinity for specific proteins. In studies performed on giant unilamellar vesicles (GUVs) with varying mole fractions of dipalymitoylphosphatidylcholine (DPPC), cholesterol, and diphytanoylphosphatidyl choline (DPhPC), DPIDA selectively partitioned into the more ordered phases, either solid or liquid-ordered (Lo) depending on membrane composition. Fluorescence imaging established the phase behavior of the resulting quaternary lipid system. Fluorescence correlation spectroscopy confirmed the fluidity of the Lo phase containing DPIDA. In the presence of CuCl2, the iminodiacetic acid (IDA) headgroup of DPIDA forms the Cu(II)-IDA complex that exhibits a high affinity for histidine residues. His-tagged proteins were bound specifically to domains enriched in DPIDA, demonstrating the capacity to target protein binding selectively to both solid and Lo phases. Steric pressure from the crowding of surface-bound proteins transformed the domains into tubules with persistence lengths that depended on the phase state of the lipid domains. © 2010 American Chemical Society.
Spatially resolved measurements of electric fields at electrochemical interfaces would be a critical step toward further understanding and modeling the detailed structure of electric double layers. The goal of this project was to perform proof-of-principle experiments to demonstrate the use of field-sensitive dyes for optical measurements of fields in electrochemical systems. A confocal microscope was developed that provides sensitive detection of the lifetime and high resolution spectra of excited fluorescence for dyes tethered to electrically conductive surfaces. Excited state lifetimes for the dyes were measured and found to be relatively unquenched when linked to indium tin oxide, but strongly quenched on gold surfaces. However, our fluorescence detection is sufficiently sensitive to measure spectra of submonolayer dye coatings even when the fluorescence was strongly quenched. Further work to create dye labeled interfaces on flat, uniform and durable substrates is necessary to make electric field measurements at interfaces using field sensitive dyes.
Biophysical Journal
Abstract not provided.
Cell membranes are dynamic substrates that achieve a diverse array of functions through multi-scale reconfigurations. We explore the morphological changes that occur upon protein interaction to model membrane systems that induce deformation of their planar structure to yield nanotube assemblies. In the two examples shown in this report we will describe the use of membrane adhesion and particle trajectory to form lipid nanotubes via mechanical stretching, and protein adsorption onto domains and the induction of membrane curvature through steric pressure. Through this work the relationship between membrane bending rigidity, protein affinity, and line tension of phase separated structures were examined and their relationship in biological membranes explored.
The innate immune system represents our first line of defense against microbial pathogens, and in many cases is activated by recognition of pathogen cellular components (dsRNA, flagella, LPS, etc.) by cell surface membrane proteins known as toll-like receptors (TLRs). As the initial trigger for innate immune response activation, TLRs also represent a means by which we can effectively control or modulate inflammatory responses. This proposal focused on TLR4, which is the cell-surface receptor primarily responsible for initiating the innate immune response to lipopolysaccharide (LPS), a major component of the outer membrane envelope of gram-negative bacteria. The goal was to better understand TLR4 activation and associated membrane proximal events, in order to enhance the design of small molecule therapeutics to modulate immune activation. Our approach was to reconstitute the receptor in biomimetic systems in-vitro to allow study of the structure and dynamics with biophysical methods. Structural studies were initiated in the first year but were halted after the crystal structure of the dimerized receptor was published early in the second year of the program. Methods were developed to determine the association constant for oligomerization of the soluble receptor. LPS-induced oligomerization was observed to be a strong function of buffer conditions. In 20 mM Tris pH 8.0 with 200 mM NaCl, the onset of receptor oligomerization occurred at 0.2 uM TLR4/MD2 with E coli LPS Ra mutant in excess. However, in the presence of 0.5 uM CD14 and 0.5 uM LBP, the onset of receptor oligomerization was observed to be less than 10 nM TLR4/MD2. Several methods were pursued to study LPS-induced oligomerization of the membrane-bound receptor, including CryoEM, FRET, colocalization and codiffusion followed by TIRF, and fluorescence correlation spectroscopy. However, there approaches met with only limited success.
Abstract not provided.
Abstract not provided.
Review of Scientific Instruments
Abstract not provided.
The objectives of this project were to develop a new scientific tool for studies of chemical processes at the single molecule level, and to provide enhanced capabilities for multiplexed, ultrasensitive separations and immunoassays. We have combined microfluidic separation techniques with our newly developed technology for spectrally and temporally resolved detection of single molecules. The detection of individual molecules can reveal fluctuations in molecular conformations, which are obscured in ensemble measurements, and allows detailed studies of reaction kinetics such as ligand or antibody binding. Detection near the single molecule level also enables the use of correlation techniques to extract information, such as diffusion rates, from the fluorescence signal. The micro-fluidic technology offers unprecedented control of the chemical environment and flow conditions, and affords the unique opportunity to study biomolecules without immobilization. For analytical separations, the fluorescence lifetime and spectral resolution of the detection makes it possible to use multiple parameters for identification of separation products to improve the certainty of identification. We have successfully developed a system that can measure fluorescence spectra, lifetimes and diffusion constants of the components of mixtures separated in a microfluidic electrophoresis chip.
Abstract not provided.
Over the past few years we have developed the ability to acquire images through a confocal microscope that contain, for each pixel, the simultaneous fluorescence lifetime and spectra of multiple fluorophores within that pixel. We have demonstrated that our system has the sensitivity to make these measurements on single molecules. The spectra and lifetimes of fluorophores bound to complex molecules contain a wealth of information on the conformational dynamics and local chemical environments of the molecules. However, the detailed record of spectral and temporal information our system provides from fluorophores in single molecules has not been previously available. Therefore, we have studied several fluorophores and simple fluorophore-molecule systems that are representative of the use of fluorophores in biological systems. Experiments include studies of a simple fluorescence resonance energy transfer (FRET) system, green fluorescent probe variants and quantum dots. This work is intended to provide a basis for understanding how fluorophores report on the chemistry of more complex biological molecules.
Single molecule fluorophores were studied for the first time with a new confocal fluorescence microscope that allows the wavelength and emission time to be simultaneously measured with single molecule sensitivity. In this apparatus, the photons collected from the sample are imaged through a dispersive optical system onto a time and position sensitive detector. This detector records the wavelength and emission time of each detected photon relative to an excitation laser pulse. A histogram of many events for any selected spatial region or time interval can generate a full fluorescence spectrum and correlated decay plot for the given selection. At the single molecule level, this approach makes entirely new types of temporal and spectral correlation spectroscopy of possible. This report presents the results of simultaneous time- and frequency-resolved fluorescence measurements of single rhodamine 6G (R6G), tetramethylrhodamine (TMR), and Cy3 embedded in thin films of polymethylmethacrylate (PMMA).
Proceedings of the National Academy of Science
Abstract not provided.
Abstract not provided.
Abstract not provided.