Symbolic regression (SR) with a multi-gene genetic program has been used to elucidate new empirical equations describing diffusion in Lennard-Jones (LJ) fluids. Examples include equations to predict self-diffusion in pure LJ fluids and equations describing the finite-size correction for self-diffusion in binary LJ fluids. The performance of the SR-obtained equations was compared to that of both the existing empirical equations in the literature and to the results from artificial neural net (ANN) models recently reported. It is found that the SR equations have improved predictive performance in comparison to the existing empirical equations, even though employing a smaller number of adjustable parameters, but show an overall reduced performance in comparison to more extensive ANNs.
Predicting the diffusion coefficient of fluids under nanoconfinement is important for many applications including the extraction of shale gas from kerogen and product turnover in porous catalysts. Due to the large number of important variables, including pore shape and size, fluid temperature and density, and the fluid-wall interaction strength, simulating diffusion coefficients using molecular dynamics (MD) in a systematic study could prove to be prohibitively expensive. Here, we use machine learning models trained on a subset of MD data to predict the self-diffusion coefficients of Lennard-Jones fluids in pores. Our MD data set contains 2280 simulations of ideal slit pore, cylindrical pore, and hexagonal pore geometries. We use the forward feature selection method to determine the most useful features (i.e., descriptors) for developing an artificial neutral network (ANN) model with an emphasis on easily acquired features. Our model shows good predictive ability with a coefficient of determination (i.e., R2) of ∼0.99 and a mean squared error of ∼2.9 × 10-5. Finally, we propose an alteration to our feature set that will allow the ANN model to be applied to nonideal pore geometries.
The objective of this project was to eliminate and/or render bulk agent unusable by a threat entity via neutralization and/or polymerization of the bulk agent using minimal quantities of additives. We proposed the in situ neutralization and polymerization of bulk chemical agents (CAs) by performing reactions in the existing CA storage container via wet chemical approaches using minimal quantities of chemical based materials. This approach does not require sophisticated equipment, fuel to power generators, electricity to power equipment, or large quantities of decontaminating materials. By utilizing the CA storage container as the batch reactor, the amount of logistical resources can be significantly reduced. Fewer personnel are required since no sophisticated equipment needs to be set up, configured, or operated. Employing the CA storage container as the batch reactor enables the capability to add materials to multiple containers in a short period of time as opposed to processing one container at a time for typical batch reactor approaches. In scenarios where a quick response is required, the material can be added to all the CA containers and left to react on its own without intervention. Any attempt to filter the CA plus material solution will increase the rate of reaction due to increased agitation of the solution.
Recently, lithium nitride (Li3N) has been proposed as a chemical warfare agent (CWA) neutralization reagent for its ability to produce nucleophilic ammonia molecules and hydroxide ions in aqueous solution. Quantum chemical calculations can provide insight into the Li3N neutralization process that has been studied experimentally. Here, we calculate reaction-free energies associated with the Li3N-based neutralization of the CWA VX using quantum chemical density functional theory and ab initio methods. We find that alkaline hydrolysis is more favorable to either ammonolysis or neutral hydrolysis for initial P-S and P-O bond cleavages. Reaction-free energies of subsequent reactions are calculated to determine the full reaction pathway. Notably, products predicted from favorable reactions have been identified in previous experiments.
Molecular diffusion coefficients calculated using molecular dynamics (MD) simulations suffer from finite-size (i.e., finite box size and finite particle number) effects. Results from finite-sized MD simulations can be upscaled to infinite simulation size by applying a correction factor. For self-diffusion of single-component fluids, this correction has been well-studied by many researchers including Yeh and Hummer (YH); for binary fluid mixtures, a modified YH correction was recently proposed for correcting MD-predicted Maxwell-Stephan (MS) diffusion rates. Here we use both empirical and machine learning methods to identify improvements to the finite-size correction factors for both self-diffusion and MS diffusion of binary Lennard-Jones (LJ) fluid mixtures. Using artificial neural networks (ANNs), the error in the corrected LJ fluid diffusion is reduced by an order of magnitude versus existing YH corrections, and the ANN models perform well for mixtures with large dissimilarities in size and interaction energies where the YH correction proves insufficient.