Initial Comparison to Experiments of EMPIRE Simulations with Diodes Driven by the Photoelectric Effect
Abstract not provided.
Abstract not provided.
Abstract not provided.
The CABle ANAlysis (CABANA) portion of the EMPHASIS™ suite is designed specifically for the simulation of cable SGEMP. The code can be used to evaluate the response of a specific cable design to threat or to compare and minimize the relative response of difference designs. This document provides user-specific information to facilitate the application of the code to cables of interest.
The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell’s equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest.
2017 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), USNC-URSI 2017
We report a frequency-domain method based on transmission line theory that we name ATLOG-Analytic Transmission Line Over Ground-to model finite or infinite wires interacting with a conducting ground excited by an electromagnetic pulse. This method allows for the treatment of finite or infinite lossy, coated wires above a lossy ground, as well as resting on or buried beneath the ground. Comparisons with full-wave simulations strengthen the validity of the proposed method.
Abstract not provided.
Journal of Electromagnetic Waves and Applications
This paper details a model for the response of a finite- or an infinite-length wire interacting with a conducting ground to an electromagnetic pulse excitation. We develop a frequency–domain method based on transmission line theory that we name ATLOG–Analytic Transmission Line Over Ground. This method is developed as an alternative to full-wave methods, as it delivers a fast and reliable solution. It allows for the treatment of finite or infinite lossy, coated wires, and lossy grounds. The cases of wire above ground, as well as resting on the ground and buried beneath the ground are treated. The reported method is general and the time response of the induced current is obtained using an inverse Fourier transform of the current in the frequency domain. The focus is on the characteristics and propagation of the transmission line mode. Comparisons with full-wave simulations strengthen the validity of the proposed method.
The Unstructured Time - Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite - element techniques on unstructured meshes. This document provides user - specific information to facilitate the use of the code for ap plications of interest. Acknowledgement The authors would like to thank all of those individuals who have helped to bring EMPHASIS/Nevada to the point it is today, including Bill Bohnhoff, Rich Drake, and all of the NEVADA code team.
The CABle ANAlysis (CABANA) portion of the EMPHASIS(TM) suite is designed specifically for the simulation of cable SGEMP. The code can be used to evaluate the response of a specific cable design to threat or to compare and minimize the relative response of difference d esigns. This document provides user - specific information to facilitate the application of the code to cables of interest. Acknowledgement The authors would like to thank all of those individuals who have helped to bring CABANA to the point it is today, including Gary Scrivner and Wesley Fan for many useful theory and design discussions.
EMPHASIS TM /NEVADA is the SIERRA/NEVADA toolkit implementation of portions of the EMP HASIS TM code suite. The purpose of the toolkit i m- plementation is to facilitate coupling to other physics drivers such as radi a- tion transport as well as to better manage code design, implementation, co m- plexity, and important verification and validation processes. This document describes the theory and implementation of the unstructured finite - element method solver , associated algorithms, and selected verification and valid a- tion . Acknowledgement The author would like to recognize all of the ALEGRA team members for their gracious and willing support through this initial Nevada toolkit - implementation process. Although much of the knowledge needed was gleaned from document a- tion and code context, they were always willing to consult personally on some of the less obvious issues and enhancements necessary.
This report describes experiences gained in performing radiation transport computations with the SCEPTRE radiation transport code for System Generated ElectroMagnetic Pulse (SGEMP) applications. SCEPTRE is a complex code requiring a fairly sophisticated user to run the code effectively, so this report provides guidance for analysts interested in performing these types of calculations. One challenge in modeling coupled photon/electron transport for SGEMP is to provide a spatial mesh that is sufficiently resolved to accurately model surface charge emission and charge deposition near material interfaces. The method that has been most commonly used to date to compute cable SGEMP typically requires a sub-micron mesh size near material interfaces, which may be difficult for meshing software to provide for complex geometries. We present here an alternative method for computing cable SGEMP that appears to substantially relax this requirement. The report also investigates the effect of refining the energy mesh and increasing the order of the angular approximation to provide some guidance on determining reasonable parameters for the energy/angular approximation needed for x-ray environments. Conclusions for γ-ray environments may be quite different and will be treated in a subsequent report. In the course of the energy-mesh refinement studies, a bug in the cross-section generation software was discovered that may cause underprediction of the result by as much as an order of magnitude for the test problem studied here, when the electron energy group widths are much smaller than those for the photons. Results will be presented and compared using cross sections generated before and after the fix. We also describe adjoint modeling, which provides sensitivity of the total charge drive to the source energy and angle of incidence, which is quite useful for comparing the effect of changing the source environment and for determining most stressing angle of incidence and source energy. This report focusses on cable SGEMP applications, but many of the conclusions will be directly applicable for box Internal ElectroMagnetic Pulse (IEMP) modeling as well.
Transport Theory and Statistical Physics
Abstract not provided.
This report describes the theoretical background on modeling electron transport in the presence of electric and magnetic fields by incorporating the effects of the Lorentz force on electron motion into the Boltzmann transport equation. Electromagnetic fields alter the electron energy and trajectory continuously, and these effects can be characterized mathematically by differential operators in terms of electron energy and direction. Numerical solution techniques, based on the discrete-ordinates and finite-element methods, are developed and implemented in an existing radiation transport code, SCEPTRE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest. UTDEM is a general-purpose code for solving Maxwell's equations on arbitrary, unstructured tetrahedral meshes. The geometries and the meshes thereof are limited only by the patience of the user in meshing and by the available computing resources for the solution. UTDEM solves Maxwell's equations using finite-element method (FEM) techniques on tetrahedral elements using vector, edge-conforming basis functions. EMPHASIS/Nevada Unstructured Time-Domain ElectroMagnetic Particle-In-Cell (UTDEM PIC) is a superset of the capabilities found in UTDEM. It adds the capability to simulate systems in which the effects of free charge are important and need to be treated in a self-consistent manner. This is done by integrating the equations of motion for macroparticles (a macroparticle is an object that represents a large number of real physical particles, all with the same position and momentum) being accelerated by the electromagnetic forces upon the particle (Lorentz force). The motion of these particles results in a current, which is a source for the fields in Maxwell's equations.
The CABle ANAlysis (CABANA) portion of the EMPHASIS{trademark} suite is designed specifically for the simulation of cable system-generated electromagnetic pulse (SGEMP). The code can be used to evaluate the response of a specific cable design to threat or to compare and minimize the relative response of difference designs. This document provides user-specific information to facilitate the application of the code to cables of interest. It solves the electrical portion of a cable SGEMP simulation. It takes specific results from the deterministic radiation-transport code CEPTRE as sources and computes the resulting electrical response to an arbitrary cable load. The cable geometry itself is also arbitrary and is limited only by the patience of the user in meshing and by the available computing resources for the solution. The CABANA simulation involves solution of the quasi-static Maxwell equations using finite-element method (FEM) techniques.
Abstract not provided.
Digest of Technical Papers-IEEE International Pulsed Power Conference
The ZR accelerator is a refurbishment of Sandia National Laboratories Z accelerator [1]. The ZR accelerator components were designed using electrostatic and circuit modeling tools. Transient electromagnetic modeling has played a complementary role in the analysis of ZR components [2]. In this paper we describe a 3D transient electromagnetic analysis of the ZR water convolute and stack using edge-based finite element techniques. © 2005 IEEE.
Abstract not provided.
Abstract not provided.
This tutorial is aimed at guiding a user through the process of performing a cable SGEMP simulation. The tutorial starts with processing a differential photon spectrum obtained from a Monte Carlo code such as ITS into a discrete (multi-group) spectrum used in CEPXS and CEPTRE. Guidance is given in the creation of a nite element mesh of the cable geometry. The set-up of a CEPTRE simulation is detailed. Users are instructed in evaluating the quality of the CEPTRE radiation transport results. The post-processing of CEPTRE results using Exostrip is detailed. And finally, an EMPHASIS/CABANA simulation is detailed including the interpretation of the output.
Abstract not provided.