Principles of microtubule guiding on microfabricated kinesin-coated surfaces : chemical and topographic surface patterns
Proposed for publication in Biophysical Journal.
Abstract not provided.
Proposed for publication in Biophysical Journal.
Abstract not provided.
Nano Letters
This paper reports the preparation of cubically ordered, self-assembled nanostructural crystals on micropatterned surfaces. Large ordered arrays of octahedral crystals were formed on substrates with triangular-shaped micropatterns that match the shape of the {111} surface morphology of the crystals. Many crystals became self-aligned in X, Y, and Z orientations through the interaction with the matching micropatterns. However, line micropatterns did not produce such well-defined crystals and crystal alignment. This work is among the first examples to show 3D crystal alignment independent of the long rodlike micellar structure that is characteristic of the hexagonal phases. Significantly, it also suggests that the geometry of the underline patterns has a large effect on the crystal morphology and orientation. We hope that these results will be helpful in developing microdevices based on self-assembled nanoscale materials.
A completely foundry compatible chip-scale package for surface micromachines has been successfully demonstrated. A pyrex (Corning 7740) glass cover is placed over the released surface micromachined die and anodically bonded to a planarized polysilicon bonding ring. Electrical feedthroughs for the surface micromachine pass underneath the polysilicon sealing ring. The package has been found to be hermetic with a leak rate of less than 5 x 10{sup {minus}8} atm cm{sup {minus}3}/s. This technology has applications in the areas of hermetic encapsulation and wafer level release and die separation.
Proceedings of SPIE - The International Society for Optical Engineering
We have designed and assembled two generations of integrated micro-optical systems that deliver pump light and detect broadband laser-induced fluorescence in micro-fluidic chemical separation systems employing electrochromatography. The goal is to maintain the sensitivity attainable with larger, tabletop machines while decreasing package size and increasing throughput (by decreasing the required chemical volume). One type of micro-optical system uses vertical-cavity surface-emitting lasers (VCSELs) as the excitation source. Light from the VCSELs is relayed with four-level surface relief diffractive optical elements (DOEs) and delivered to the chemical volume through substrate-mode propagation. Indirect fluorescence from dye-quenched chemical species is collected and collimated with a high numerical aperture DOE. A filter blocks the excitation wavelength, and the resulting signal is detected as the chemical separation proceeds. Variations of this original design include changing the combination of reflective and transmissive DOEs and optimizing the high numerical aperture DOE with a rotationally symmetric iterative discrete on-axis algorithm. We will discuss the results of these implemented optimizations.