Publications

63 Results
Skip to search filters

Mini-DAQ: A lightweight, low-cost, high resolution, data acquisition system for wave energy converter testing

HardwareX

Bosma, Bret; Coe, Ryan; Bacelli, Giorgio B.; Brekken, Ted; Gunawan, Budi G.

As part of the development process, scaled testing of wave energy converter devices are necessary to prove a concept, study hydrodynamics, and validate control system approaches. Creating a low-cost, small, lightweight data acquisition system suitable for scaled testing is often a barrier for wave energy converter developers’ ability to test such devices. This paper outlines an open-source solution to these issues, which can be customized based on specific needs. This will help developers with limited resources along a path toward commercialization.

More Details

The Marine and Hydrokinetic ToolKit (MHKiT) for Data Quality Control and Analysis [Slides]

Olson, Sterling S.; Fao, Rebecca F.; Coe, Ryan G.; Ruehl, Kelley M.; Driscoll, Frederick D.; Gunawan, Budi G.; Lansing, Carina L.; Ivanov , Hristo I.

The ability to collect, ingest, condition, reduce, quality control, process, visualize, and store data in a standardized way is critical at all stages of Marine Energy (ME) research and technology/project development. MHKiT is an open-source, standardized suite of ME data processing functions that provides the ability to ingest, condition, reduce, quality control, process, visualize and store ME data. MHKiT is developed in both Python and Matlab.

More Details

WEC array networked microgrid control design and energy storage system requirements

OCEANS 2019 MTS/IEEE Seattle, OCEANS 2019

Weaver, Wayne W.; Hagmuller, Alex; Ginsburg, Max; Wilson, David G.; Bacelli, Giorgio B.; Robinett, Rush D.; Coe, Ryan; Gunawan, Budi G.

Wave Energy Converter (WEC) technologies transform power from the waves to the electrical grid. WEC system components are investigated that support the performance, stability, and efficiency as part of a WEC array. To this end, Aquaharmonics Inc took home the 1.5 million grand prize in the 2016 U.S. Department of Energy Wave Energy Prize, an 18-month design-build-test competition to increase the energy capture potential of wave energy devices. Aquaharmonics intends to develop, build, and perform open ocean testing on a 1: 7 scale device. Preliminary wave tank testing on the mechanical system of the 1: 20 scale device has yielded a data-set of operational conditions and performance. In this paper, the Hamiltonian surface shaping and power flow control (HSSPFC) method is used in conjunction with scaled wave tank test data to explore the design space for the electrical transmission of energy to the shore-side power grid. Of primary interest is the energy storage system (ESS) that will electrically link the WEC to the shore. Initial analysis results contained in this paper provide a trade-off in storage device performance and design selection.

More Details

U.S. Department of Energy Reference Model Program RM1: Experimental Results

Hill, Craig H.; Neary, Vincent S.; Gunawan, Budi G.; Guala, Michele G.; Sotiropoulos, Fotis S.

The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing nonproprietary Reference Models (RM) of MHK technology designs as study objects for opensource research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN-SAFL). Reference Model 1 (RM1) is a 1:40 geometric scale dual-rotor axial flow horizontal axis device with counter-rotating rotors, each with a rotor diameter dT = 0.5m. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADVs) aligned with each rotor and the midpoint for RM1. Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2.425m3s-1, resulting in a hub height velocity of approximately Uhub = 1.05ms-1 and blade chord length Reynolds numbers of Rec ≈ 3.0x105. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing turbulence performance models and their ability to accurately predict device performance metrics, including computational fluid dynamics (CFD) models that can be used to predict turbulent inflow environments, reproduce wake velocity deficit, recovery and higher order turbulent statistics, as well as device performance metrics.

More Details

Assessing and Testing Hydrokinetic Turbine Performance and Effects on Open Channel Hydrodynamics: An Irrigation Canal Case Study

Gunawan, Budi G.; Neary, Vincent S.; Mortensen, Josh M.; Roberts, Jesse D.

Hydrokinetic energy from flowing water in open channels has the potential to support local electricity needs with lower regulatory or capital investment than impounding water with more conventional means. MOU agencies involved in federal hydropower development have identified the need to better understand the opportunities for hydrokinetic (HK) energy development within existing canal systems that may already have integrated hydropower plants. This document provides an overview of the main considerations, tools, and assessment methods, for implementing field tests in an open-channel water system to characterize current energy converter (CEC) device performance and hydrodynamic effects. It describes open channel processes relevant to their HK site and perform pertinent analyses to guide siting and CEC layout design, with the goal of streamlining the evaluation process and reducing the risk of interfering with existing uses of the site. This document outlines key site parameters of interest and effective tools and methods for measurement and analysis with examples drawn from the Roza Main Canal, in Yakima, WA to illustrate a site application.

More Details

Model Test Bed for Evaluating Wave Models and Best Practices for Resource Assessment and Characterization

Neary, Vincent S.; yang, zhaoqing y.; Wang, Taiping W.; Gunawan, Budi G.; Dallman, Ann R.

A wave model test bed is established to benchmark, test and evaluate spectral wave models and modeling methodologies (i.e., best practices) for predicting the wave energy resource parameters recommended by the International Electrotechnical Commission, IEC TS 62600-101Ed. 1.0 ©2015. Among other benefits, the model test bed can be used to investigate the suitability of different models, specifically what source terms should be included in spectral wave models under different wave climate conditions and for different classes of resource assessment. The overarching goal is to use these investigations to provide industry guidance for model selection and modeling best practices depending on the wave site conditions and desired class of resource assessment. Modeling best practices are reviewed, and limitations and knowledge gaps in predicting wave energy resource parameters are identified.

More Details

WEC-sim phase 1 validation testing-experimental setup and initial results

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Bosma, Bret; Simmons, Asher; Lomonaco, Pedro; Ruehl, Kelley M.; Gunawan, Budi G.

In the wave energy industry, there is a need for open source numerical codes and publicly available experimental data, both of which are being addressed through the development of WEC-Sim by Sandia National Laboratories and the National Renewable Energy Laboratory (NREL). WEC-Sim is an open source code used to model wave energy converters (WECs) when subject to incident waves. In order for the WEC-Sim code to be useful, code verification and physical model validation is necessary. This paper describes the wave tank testing for the 1:33 scale experiments of a Floating Oscillating Surge Wave Energy Converter (FOSWEC). The WEC-Sim experimental data set will help to advance the wave energy converter industry by providing a free, high-quality data set for researchers and developers. This paper describes the WEC-Sim open source wave energy converter simulation tool, experimental validation plan, and presents preliminary experimental results from the FOSWEC Phase 1 testing.

More Details

U.S. Department of Energy Reference Model Program RM1: Experimental Results

Hill, Craig H.; Neary, Vincent S.; Gunawan, Budi G.; Guala, Michele G.; Sotiropoulos, Fotis S.

The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing non-proprietary Reference Models (RM) of MHK technology designs as study objects for open-source research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN-SAFL). Reference Model 1 (RM2) is a 1:40 geometric scale dual-rotor axial flow horizontal axis device with counter-rotating rotors, each with a rotor diameter dT = 0.5m. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADVs) aligned with each rotor and the midpoint for RM1. Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2.425m3s-1, resulting in a hub height velocity of approximately Uhub = 1.05ms-1 and blade chord length Reynolds numbers of Rec ≈ 3.0x105. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing turbulence performance models and their ability to accurately predict device performance metrics, including computational fluid dynamics (CFD) models that can be used to predict turbulent inflow environments, reproduce wake velocity deficit, recovery and higher order turbulent statistics, as well as device performance metrics.

More Details

Experimental Confirmation of Water Column Natural Resonance Migration in a BBDB Device

Bull, Diana L.; Gunawan, Budi G.; Holmes, Brian H.

Experiments were conducted with a Backward Bent Duct Buoy (BBDB) oscillating water column wave energy conversion device with a scaling factor of 50 at HMRC at University College Cork, Ireland. Results were compared to numerical performance models. This work experimentally verified the migration of the natural resonance location of the water column due to hydrodynamic coupling for a floating non- axisymmetric device without a power conversion chain PCC present. In addition, the experimental results verified the performance model with a PCC of the same non- axisymmetric device when both floating and grounded.

More Details

U.S. Department of Energy Reference Model Program RM2: Experimental Results

Hill, Craig H.; Neary, Vincent S.; Gunawan, Budi G.; Guala, Michele G.; Sotiropoulos, Fotis S.

The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing non-proprietary Reference Models (RM) of MHK technology designs as study objects for open-source research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN - SAFL) . Reference Model 2 (RM2) is a 1:15 geometric scale dual - rotor cross flow vertical axis device with counter - rotating rotors, each with a rotor diameter dT = 0.43m and rotor height, hT = 0.323 m. RM2 is a river turbine designed for a site modeled after a reach in the lower Mississippi River near Baton Rouge, Louisiana (Barone et al. 2014) . Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADV) aligned with each rotor and the midpoint for RM2 . Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2. 35m3s-1 , resulting in a hub height velocity of approximately Uhub = 1. 2 ms-1 and blade chord length Reynolds numbers of Rec = 6 .1x104. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing computational fluid dynamics (CFD) models and their ability to accurately simulate turbulent inflow environments, device performance metrics, and to reproduce wake velocity deficit, recovery and higher order turbulent statistics.

More Details

Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York

Renewable Energy

Gunawan, Budi G.; Neary, Vincent S.

This study demonstrates a site resource assessment to examine the temporal variation of the mean current, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two-months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s-1, and turbulence intensity of 15% at a reference mean current of 2 m s-1. Flood and ebb flow directions are nearly bi-directional, with higher current magnitude during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and power densities derived from the current measurements can significantly be influenced by the length of the time window used for averaging the current data. Furthermore, the theoretical power density at the site, derived from the current measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. As a result, this discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.

More Details
63 Results
63 Results