Publications

Results 1–25 of 63
Skip to search filters

Single Photon Emitters Coupled to Photonic Wire bonds

Mounce, Andrew M.; Kaehr, Bryan J.; Titze, Michael T.; Bielejec, Edward S.; Byeon, Heejun B.

This project will test the coupling of light emitted from silicon vacancy and nitrogen vacancy defects in diamond into additively manufactured photonic wire bonds toward integration into an "on-chip quantum photonics platform". These defects offer a room-temperature solid state solution for quantum information technologies but suffer from issues such as low activation rate and variable local environments. Photonic wire bonding will allow entanglement of pre-selected solid-state defects alleviating some of these issues and enable simplified integration with other photonic devices. These developments could prove to be key technologies to realize quantum secured networks for national security applications.

More Details

Multimode Metastructures: Novel Hybrid 3D Lattice Topologies

Boyce, Brad B.; Garland, Anthony G.; White, Benjamin C.; Jared, Bradley H.; Conway, Kaitlynn C.; Adstedt, Katerina A.; Dingreville, Remi P.; Robbins, Joshua R.; Walsh, Timothy W.; Alvis, Timothy A.; Branch, Brittany A.; Kaehr, Bryan J.; Kunka, Cody; Leathe, Nicholas L.

With the rapid proliferation of additive manufacturing and 3D printing technologies, architected cellular solids including truss-like 3D lattice topologies offer the opportunity to program the effective material response through topological design at the mesoscale. The present report summarizes several of the key findings from a 3-year Laboratory Directed Research and Development Program. The program set out to explore novel lattice topologies that can be designed to control, redirect, or dissipate energy from one or multiple insult environments relevant to Sandia missions, including crush, shock/impact, vibration, thermal, etc. In the first 4 sections, we document four novel lattice topologies stemming from this study: coulombic lattices, multi-morphology lattices, interpenetrating lattices, and pore-modified gyroid cellular solids, each with unique properties that had not been achieved by existing cellular/lattice metamaterials. The fifth section explores how unintentional lattice imperfections stemming from the manufacturing process, primarily sur face roughness in the case of laser powder bed fusion, serve to cause stochastic response but that in some cases such as elastic response the stochastic behavior is homogenized through the adoption of lattices. In the sixth section we explore a novel neural network screening process that allows such stocastic variability to be predicted. In the last three sections, we explore considerations of computational design of lattices. Specifically, in section 7 using a novel generative optimization scheme to design novel pareto-optimal lattices for multi-objective environments. In section 8, we use computational design to optimize a metallic lattice structure to absorb impact energy for a 1000 ft/s impact. And in section 9, we develop a modified micromorphic continuum model to solve wave propagation problems in lattices efficiently.

More Details

Direct-write orientation of charge-transfer liquid crystals enables polarization-based coding and encryption

Scientific Reports

Van Winkle, Madeline; Wallace, Harper O.W.; Smith, Niquana; Pomerene, Andrew P.; Wood, Michael G.; Kaehr, Bryan J.; Reczek, Joseph J.

Optical polarizers encompass a class of anisotropic materials that pass-through discrete orientations of light and are found in wide-ranging technologies, from windows and glasses to cameras, digital displays and photonic devices. The wire-grids, ordered surfaces, and aligned nanomaterials used to make polarized films cannot be easily reconfigured once aligned, limiting their use to stationary cross-polarizers in, for example, liquid crystal displays. Here we describe a supramolecular material set and patterning approach where the polarization angle in stand-alone films can be precisely defined at the single pixel level and reconfigured following initial alignment. This capability enables new routes for non-binary information storage, retrieval, and intrinsic encryption, and it suggests future technologies such as photonic chips that can be reconfigured using non-contact patterning.

More Details

Investigating Porous Media for Relief Printing Using Micro-Architected Materials

Advanced Engineering Materials

Gallegos, Michael A.; Garcia, Chelsea M.; Schunk, Randy; White, Benjamin C.; Boyce, Brad B.; Secor, Ethan B.; Kaehr, Bryan J.

Advances in printed electronics are predicated on the integration of sophisticated printing technologies with functional materials. Although scalable manufacturing methods, such as letterpress and flexographic printing, have significant history in graphic arts printing, functional applications require sophisticated control and understanding of nanoscale transfer of fluid inks. Herein, a versatile platform is introduced to study and engineer printing forms, exploiting a microscale additive manufacturing process to design micro-architected materials with controllable porosity and deformation. Building on this technology, controlled ink transfer for submicron functional films is demonstrated. The design freedom and high-resolution 3D control afforded by this method provide a rich framework for studying mechanics of fluid transfer for advanced manufacturing processes.

More Details

Coulombic friction in metamaterials to dissipate mechanical energy

Extreme Mechanics Letters

Garland, Anthony G.; Adstedt, Katarina M.; White, Benjamin C.; Mook, William M.; Kaehr, Bryan J.; Jared, Bradley H.; Lester, Brian T.; Leathe, Nicholas L.; Schwaller, Eric; Boyce, Brad B.

Product designs from a wide range of industries such as aerospace, automotive, biomedical, and others can benefit from new metamaterials for mechanical energy dissipation. In this study, we explore a novel new class of metamaterials with unit cells that absorb energy via sliding Coulombic friction. Remarkably, even materials such as metals and ceramics, which typically have no intrinsic reversible energy dissipation, can be architected to provide dissipation akin to elastomers. The concept is demonstrated at different scales (centimeter to micrometer), with different materials (metal and polymer), and in different operating environments (high and low temperatures), all showing substantial dissipative improvements over conventional non-contacting lattice unit cells. Further, as with other ‘programmable’ metamaterials, the degree of Coulombic absorption can be tailored for a given application. An analytic expression is derived to allow rapid first-order optimization. This new class of Coulombic friction energy absorbers can apply broadly to many industrial sectors such as transportation (e.g. monolithic shock absorbers), biomedical (e.g. prosthetics), athletic equipment (e.g. skis, bicycles, etc.), defense (e.g. vibration tolerant structures), and energy (e.g. survivable electrical grid components).

More Details

Molecular tail chemistry controls thermal transport in fullerene films

Physical Review Materials

Giri, Ashutosh; Chou, Stanley S.; Drury, Daniel E.; Tomko, Kathleen Q.; Olson, David; Gaskins, John T.; Kaehr, Bryan J.; Hopkins, Patrick E.

We report on the thermal conductivities of alkyl- and indene-group functionalized fullerene derivative thin films as measured via time domain thermoreflectance and steady state thermoreflectance. The thermal conductivities vary from 0.064±0.007 W m-1 K-1 for [6,6]-phenyl C61-butyric acid methyl ester (PCBM) to 0.15±0.017 W m-1 K-1 for indene-C60 bisadduct at room temperature and do not exhibit significant temperature dependence from 300 to 375 K. In comparison to the thermal conductivity of PCBM, increasing the length of the alkyl chain, as in the case of [6,6]-phenyl C61-butyric acid butyl ester, and [6,6]-phenyl C61-butyric acid octyl ester leads to higher thermal conductivities. Likewise, increasing the number of alkyl chains attached to the fullerenes as in the case of bisadduct PCBM leads to a higher thermal conductivity compared to that of PCBM. We present atomistic insights into the role of chemical functionalization on the overall heat transfer in these fullerene derivatives by conducting molecular dynamics simulations and lattice dynamics calculations. The thermal conductivities predicted via our atomistic simulations qualitatively agree with the experimental trends for our fullerene derivatives. Lattice dynamics calculations reveal that one of the main factors dictating the ultralow thermal conductivities in fullerene derivatives is the large reduction in modal diffusivities in the molecular crystals as calculated from the Allen-Feldman model, thus providing an explanation for their largely reduced thermal conductivities as compared to that of C60 crystals. The low diffusivities result from high degrees of localization of Einstein-like vibrations in fullerene derivatives due to the molecular side chains, providing the ability to dial-in the properties of these low thermal conductivity solids via molecular engineering.

More Details

Shape-Preserved Transformation of Biological Cells into Synthetic Hydrogel Microparticles

Advanced Biosystems

Meyer, Kristin M.; Labriola, Nicholas R.; Darling, Eric M.; Kaehr, Bryan J.

The synthesis of materials that can mimic the mechanical, and ultimately functional, properties of biological cells can broadly impact the development of biomimetic materials, as well as engineered tissues and therapeutics. Yet, it is challenging to synthesize, for example, microparticles that share both the anisotropic shapes and the elastic properties of living cells. Here, a cell-directed route to replicate cellular structures into synthetic hydrogels such as polyethylene glycol (PEG) is described. First, the internal and external surfaces of chemically fixed cells are replicated in a conformal layer of silica using a sol–gel process. The template is subsequently removed to render shape-preserved, mesoporous silica replicas. Infiltration and cross-linking of PEG precursors and dissolution of the silica result in a soft hydrogel replica of the cellular template as demonstrated using erythrocytes, HeLa, and neuronal cultured cells. The elastic modulus can be tuned over an order of magnitude (≈10–100 kPa) though with a high degree of variability. Furthermore, synthesis without removing the biotemplate results in stimuli-responsive particles that swell/deswell in response to environmental cues. Overall, this work provides a foundation to develop soft particles with nearly limitless architectural complexity derived from dynamic biological templates.

More Details

Characterization of 3D printed computational imaging element for use in task-specific compressive classification

Proceedings of SPIE - The International Society for Optical Engineering

Birch, Gabriel C.; Redman, Brian J.; Dagel, Amber L.; Kaehr, Bryan J.; Dagel, Daryl D.; LaCasse, Charles F.; Quach, Tu-Thach Q.; Galiardi, Meghan

We investigate the feasibility of additively manufacturing optical components to accomplish task-specific classification in a computational imaging device. We report on the design, fabrication, and characterization of a non-traditional optical element that physically realizes an extremely compressed, optimized sensing matrix. The compression is achieved by designing an optical element that only samples the regions of object space most relevant to the classification algorithms, as determined by machine learning algorithms. The design process for the proposed optical element converts the optimal sensing matrix to a refractive surface composed of a minimized set of non-repeating, unique prisms. The optical elements are 3D printed using a Nanoscribe, which uses two-photon polymerization for high-precision printing. We describe the design of several computational imaging prototype elements. We characterize these components, including surface topography, surface roughness, and angle of prism facets of the as-fabricated elements.

More Details
Results 1–25 of 63
Results 1–25 of 63