BARDA Presentation
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Analytical Methods
The discovery of the RNA-guided DNA nuclease CRISPR-Cas9 has enabled the targeted editing of genomes from diverse organisms, but the permanent and inheritable nature of genome modification also poses immense risks. The potential for accidental exposure, malicious use, or undesirable persistence of Cas9 therapeutics and off-target genome effects highlight the need for detection assays. Here we report a centrifugal microfluidic platform for the measurement of both Cas9 protein levels and nuclease activity. Because Cas9 from many bacterial species have been adapted for biotechnology applications, we developed the capability to detect Cas9 from the widely-used S. pyogenes, as well as S. aureus, N. meningitidis, and S. thermophilus using commercially-available antibodies. Further, we show that the phage-derived anti-CRISPR protein AcrIIC1, which binds to Cas9 from several species, can be used as a capture reagent to broaden the species range of detection. As genome modification generally requires Cas9 nuclease activity, a fluorescence-based sedimentation nuclease assay was also incorporated to allow the sensitive and simultaneous measurement of both Cas9 protein and activity in a single biological sample.
Abstract not provided.
Abstract not provided.
Analytical Chemistry
The RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate its utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.
Abstract not provided.
Abstract not provided.