Publications

35 Results

Search results

Jump to search filters

Development of Elastic Recoil Detection Technique for Quantifying Light Isotope Concentrations in Irradiated TPBAR Materials

Doyle, B.L.; Foulk, James W.; Hattar, Khalid M.; Muntifering, Brittany R.

The National Nuclear Security Administration's Tritium Sustainment Program is responsible for the design, development, demonstration, testing, analysis, and characterization of tritium-producing burnable absorber rods (TPBARs) and their components, in addition to producing tritium for the nation's strategic stockpile. The FY18 call for proposals included the specific basic science research topic, "Demonstration and evaluation of advanced characterization methods, particularly for quantifying the concentration of light isotopes (1H, 2H, and 4He, 6Li, and 7Li) in metal or ceramic matrices". A project IWO-389859 was awarded to the Ion Beam Lab (IBL) at Sandia-NM in FY18. This reports the success we had in developing and demonstrating such a method: 42 MeV Si+ 7 from the IBL' s Tandem was used to recoil these light isotopes into special detectors that separated all these isotopes by simultaneously measuring the energy and stopping power of these reoils. This technique, called Heavy Ion - Elastic Recoil Detection or HI-ERD, accurately measured the enriched 6 Li/Li-total of 0.246 +- 0.016, compared to the known value of 0.239. The isotopes 1H, 2H, 4He, 6Li and 7Li were also measured. (page intentionally left blank)

More Details

In situ TEM multi-beam ion irradiation as a technique for elucidating synergistic radiation effects

Materials

Foulk, James W.; Bufford, Daniel C.; Muntifering, Brittany R.; Senor, David; Steckbeck, MacKenzie; Davis, Justin; Doyle, B.L.; Buller, Daniel L.; Hattar, Khalid M.

Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia's in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g.; for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.

More Details

Impact of oleylamine: oleic acid ratio on the morphology of yttria nanomaterials

Journal of Materials Science

Treadwell, Larico J.; Boyle, Timothy; Bell, Nelson S.; Rodriguez, Mark A.; Muntifering, Brittany R.; Hattar, Khalid M.

The impact on the final morphology of yttria (Y2O3) nanoparticles from different ratios (100/0, 90/10, 65/35, and 50/50) of oleylamine (ON) and oleic acid (OA) via a solution precipitation route has been determined. In all instances, powder X-ray diffraction indicated that the cubic Y2O3 phase (PDF #00-025-1200) with the space group I-3a (206) had been formed. Analysis of the collected FTIR data revealed the presence of stretches and bends consistent with ON and OA, for all ratios investigated, except the 100/0. Transmission electron microscopy images revealed regular and elongated hexagons were produced for the ON (100/0) sample. As OA was added, the nanoparticle morphology changed to lamellar pillars (90/10), then irregular particles (65/35), and finally plates (50/50). The formation of the hexagonal-shaped nanoparticles was determined to be due to the preferential adsorption of ON onto the {101} planes. As OA was added to the reaction mixture, it was found that the {111} planes were preferentially coated, replacing ON from the surface, resulting in the various morphologies noted. The roles of the ratio of ON/OA in the synthesis of the nanocrystals were elucidated in the formation of the various Y2O3 morphologies, as well as a possible growth mechanism based on the experimental data.

More Details

Irradiation Induced Changes to Zircaloy-4: A Final Report to PNNL for FY16

Snow, Clark S.; Hattar, Khalid M.; Muntifering, Brittany R.

Understanding the stability of the zircaloy-4 liner, which is used in the Tritium- Producing Burnable Absorber Rod, is important for predicting the maximium reasonable life time and failure mechanisms of this essential component for tritium production. In this year-long study, a combination of in-situ ion irradiation transmission electron microscopy and thermal desorption measurements were used to explore the structural stability of Zr-4 as a function of sequential and concurrent displacement damage, helium implantation, and molecular deuterium implantation at the temperature of interest for reactor operation. Under the limited conditions explored, the liner alloy appeared to be relatively stable based on the direct TEM observation of the microstructure.

More Details

In situ transmission electron microscopy He+ implantation and thermal aging of nanocrystalline iron

Journal of Nuclear Materials

Muntifering, Brittany R.; Fang, Youwu; Leff, Asher C.; Dunn, Aaron; Qu, Jianmin; Taheri, Mitra L.; Dingreville, Remi; Hattar, Khalid M.

Due to their high density of interfaces, nanostructured material are hypothesized to show a higher tolerance to radiation damage compared to conventional coarse-grained materials and are on interest for use in future nuclear reactors. In order to investigate the roles of vacancies, self-interstitials, and helium during defect accumulation, and the thermal evolution of such defects, a complex set of in situ TEM experiments were performed in nanocrystalline iron.

More Details

Cavity evolution at grain boundaries as a function of radiation damage and thermal conditions in nanocrystalline nickel

Materials Research Letters

Muntifering, Brittany R.; Blair, Sarah J.; Gong, Cajer; Dunn, Aaron; Dingreville, Remi; Qu, Jianmin; Hattar, Khalid M.

Enhanced radiation tolerance of nanostructured metals is attributed to the high density of interfaces that can absorb radiationinduced defects. Here, cavity evolution mechanisms during cascade damage, helium implantation, and annealing of nanocrystalline nickel are characterized via in situ transmission electron microscopy (TEM). Films subjected to self-ion irradiation followed by helium implantation developed evenly distributed cavity structures, whereas films exposed in the reversed order developed cavities preferentially distributed along grain boundaries. Post-irradiation annealing and orientation mapping demonstrated uniform cavity growth in the nanocrystalline structure, and cavities spanning multiple grains. These mechanisms suggest limited ability to reduce swelling, despite the stability of the nanostructure.

More Details
35 Results
35 Results