Publications

15 Results
Skip to search filters

Understanding Phase and Interfacial Effects of Spall Fracture in Additively Manufactured Ti-5Al-5V-5Mo-3Cr

Branch, Brittany A.; Ruggles, Timothy R.; Miers, John C.; Massey, Caroline E.; Moore, David G.; Brown, Nathan B.; Duwal, Sakun D.; Silling, Stewart A.; Mitchell, John A.; Specht, Paul E.

Additive manufactured Ti-5Al-5V-5Mo-3Cr (Ti-5553) is being considered as an AM repair material for engineering applications because of its superior strength properties compared to other titanium alloys. Here, we describe the failure mechanisms observed through computed tomography, electron backscatter diffraction (EBSD), and scanning electron microscopy (SEM) of spall damage as a result of tensile failure in as-built and annealed Ti-5553. We also investigate the phase stability in native powder, as-built and annealed Ti-5553 through diamond anvil cell (DAC) and ramp compression experiments. We then explore the effect of tensile loading on a sample containing an interface between a Ti-6Al-V4 (Ti-64) baseplate and additively manufactured Ti-5553 layer. Post-mortem materials characterization showed spallation occurred in regions of initial porosity and the interface provides a nucleation site for spall damage below the spall strength of Ti-5553. Preliminary peridynamics modeling of the dynamic experiments is described. Finally, we discuss further development of Stochastic Parallel PARticle Kinteic Simulator (SPPARKS) Monte Carlo (MC) capabilities to include the integration of alpha (α)-phase and microstructural simulations for this multiphase titanium alloy.

More Details

Impact Response of Control Atmosphere Plasma Spray Deposited Materials

Branch, Brittany A.; McCoy, C.A.; Vackel, Andrew V.

Thermal spray processing of metals and respective blends is becoming increasingly attractive due to the unique properties such as increased yield strength, low ductility, and differences in tensile and compressive strengths that result from microstructural features due to the spray process compared to other additive manufacturing methods. Here we report the results of plate impact experiments applied to Controlled Atmosphere Plasma Spray deposits of tantalum (Ta), niobium (Nb), and a tantalum-niobium blend (TaNb). These methods allowed for definition of the Hugoniot for each material type and the assessment of the Hugoniot Elastic Limit (HEL). Spallation experiments were conducted, and soft recovery of each material type allowed for scanning electron microscopy to characterize the fracture mechanism during tensile loading.

More Details

Transmitted wave measurements in cold sprayed materials under dynamic compression

McCoy, C.A.; Branch, Brittany A.; Vackel, Andrew V.

Spray-formed materials have complex microstructures which pose challenges for microscale and mesoscale modeling. To constrain these models, experimental measurements of wave profiles when subjecting the material to dynamic compression are necessary. The use of a gas gun to launch a shock into a material is a traditional method to understand wave propagation and provide information of time-dependent stress variations due to complex microstructures. This data contains information on wave reverberations within a material and provides a boundary condition for simulation. Here we present measurements of the wavespeed and wave profile at the rear surface of tantalum, niobium, and a tantalum/niobium blend subjected to plate impact. Measurements of the Hugoniot elastic limit are compared to previous work and wavespeeds are compared to longitudinal sound velocity measurements to examine wave damping due to the porous microstructure.

More Details

Multimode Metastructures: Novel Hybrid 3D Lattice Topologies

Boyce, Brad B.; Garland, Anthony G.; White, Benjamin C.; Jared, Bradley H.; Conway, Kaitlynn C.; Adstedt, Katerina A.; Dingreville, Remi P.; Robbins, Joshua R.; Walsh, Timothy W.; Alvis, Timothy A.; Branch, Brittany A.; Kaehr, Bryan J.; Kunka, Cody; Leathe, Nicholas L.

With the rapid proliferation of additive manufacturing and 3D printing technologies, architected cellular solids including truss-like 3D lattice topologies offer the opportunity to program the effective material response through topological design at the mesoscale. The present report summarizes several of the key findings from a 3-year Laboratory Directed Research and Development Program. The program set out to explore novel lattice topologies that can be designed to control, redirect, or dissipate energy from one or multiple insult environments relevant to Sandia missions, including crush, shock/impact, vibration, thermal, etc. In the first 4 sections, we document four novel lattice topologies stemming from this study: coulombic lattices, multi-morphology lattices, interpenetrating lattices, and pore-modified gyroid cellular solids, each with unique properties that had not been achieved by existing cellular/lattice metamaterials. The fifth section explores how unintentional lattice imperfections stemming from the manufacturing process, primarily sur face roughness in the case of laser powder bed fusion, serve to cause stochastic response but that in some cases such as elastic response the stochastic behavior is homogenized through the adoption of lattices. In the sixth section we explore a novel neural network screening process that allows such stocastic variability to be predicted. In the last three sections, we explore considerations of computational design of lattices. Specifically, in section 7 using a novel generative optimization scheme to design novel pareto-optimal lattices for multi-objective environments. In section 8, we use computational design to optimize a metallic lattice structure to absorb impact energy for a 1000 ft/s impact. And in section 9, we develop a modified micromorphic continuum model to solve wave propagation problems in lattices efficiently.

More Details

Transient Deformation in Additively Manufactured 316L Stainless Steel Lattices Characterized with in-situ X-ray Phase Contrast Imaging: The Complete Dataset for Three Geometrical Lattices

Branch, Brittany A.; Specht, Paul E.; Jensen, Sally J.; Jared, Bradley H.

Metallic lattice structures are being considered for shock mitigation applications due to their superior mechanical properties, energy absorption capability and lightweight characteristics inherent of the additive manufacturing process. In this study, shock compression experiments coupled to x-ray phase contrast imaging (PCI) were conducted on 316L stainless steel lattices. Meso-scale simulations incorporating the as-built lattice structure characterized by computed tomography were used to simulate PCI radiographs in CTH for direct comparison to experimental data. The methodology presented here offers robust validation for constitutive properties to further our understanding of lattice compaction at application-relevant strain rates.

More Details

Directional shock diode behavior through the interaction of geometric voids in engineered polymer assemblies

Journal of Applied Physics

Branch, Brittany A.; Frank, Geoff; Abbott, Andrew; Lacina, David; Dattelbaum, Dana M.; Neel, Christopher; Spowart, Jonathan

With the advent of additive manufacturing (AM) techniques, a new class of shockwave mitigation and structural supports has been realized through the hierarchical assembly of polymer materials. To date, there have been a limited number of studies investigating the role of structure on shockwave localization and whether AM offers a means to tailor shockwave behavior. Of particular interest is whether the mesoscopic structure can be tailored to achieve shockwave properties in one direction of impact vs the other. Here, we illustrate directional response in engineered polymer foams. In situ time-resolved x-ray phase contrast imaging at the Advanced Photon Source was used to characterize these diode-like structures. This work offers a breakthrough in materials technology for the development of protective structures that require augmentation of shock in one direction while diminishing transmission in the opposite direction.

More Details

Impact of filler composition on mechanical and dynamic response of 3-D printed silicone-based nanocomposite elastomers

Composites Science and Technology

Talley, Samantha J.; Branch, Brittany A.; Welch, Cynthia F.; Park, Chi H.; Watt, John; Kuettner, Lindsey; Patterson, Brian; Dattelbaum, Dana M.; Lee, Kwan S.

Cellular silicone reinforced with silica filler prepared using additive manufacturing (AM) have been used widely for vibrational damping and shockwave mitigation. The two most commonly printed cellular silicone structures, simple cubic (SC) and face-centered tetragonal (FCT) display distinctly different static and dynamic mechanical responses dependent upon structure. In this work, the relationship between filler size and composition with mechanical response is investigated using polydimethylsiloxane-based silicones filled with aluminum oxide, graphite, or titanium dioxide. SC and FCT structures of porous, periodic silicone pads were printed using new direct ink write (DIW) resin formulations containing up to 25 wt% of functional filler (TiO2, Al2O3, or graphite). All AM pads were characterized using mechanical techniques (DMA, compression). Dynamic compression experiments coupled with time-resolved X-ray phase contrast imaging were performed to obtain insights into role of filler interactions in the in situ evolution of shockwave coupling in these functional, periodic porous polymers.

More Details
15 Results
15 Results