Publications

25 Results
Skip to search filters

Seismic strain energy partitioning: estimating the strain energy of seismic body waves

Poppeliers, Christian P.; Young, Brian A.

This report details a method to estimate the energy content of various types of seismic body waves. The method is based on the strain energy of an elastic wavefield and Hooke’s Law. We present a detailed derivation of a set of equations that explicitly partition the seismic strain energy into two parts: one for compressional (P) waves and one for shear (S) waves. We posit that the ratio of these two quantities can be used to determine the relative contribution of seismic P and S waves, possibly as a method to discriminate between earthquakes and buried explosions. We demonstrate the efficacy of our method by using it to compute the strain energy of synthetic seismograms with differing source characteristics. Specifically, we find that explosion-generated seismograms contain a preponderance of P wave strain energy when compared to earthquake-generated synthetic seismograms. Conversely, earthquake-generated synthetic seismograms contain a much greater degree of S wave strain energy when compared to explosion-generated seismograms.

More Details

Recovery and calibration of legacy underground nuclear test seismic data from the Leo Brady seismic network

Seismological Research Letters

Young, Brian A.; Abbott, Robert A.

The Leo Brady Seismic Network (LBSN, originally the Sandia Seismic Network) was established in 1960 by Sandia National Laboratories to monitor underground nuclear tests (UGTs) at the Nevada National Security Site (NNSS, formerly named the Nevada Test Site). The LBSN has been in various configurations throughout its existence, but it has generally been comprised of four to six stations at regional distances (∼ 150-400 km) from the NNSS with approximately evenly spaced azimuthal coverage. Between 1962 and the end of nuclear testing in 1992, the LBSN-and a sister network operated by Lawrence Livermore National Laboratories-was the most comprehensive United States source of regional seismic data of UGTs. Approximately 75% of all UGTs performed by the United States occurred in the predigital era. At that time, LBSN data were transmitted as frequency-modulated (FM) audio over telephone lines to a central location and recorded as analog waveforms on high-fidelity magnetic audio tapes. These tapes have been in dry temperature-stable storage for decades and contain the sole record of this irreplaceable data; full waveforms of LBSN-recorded UGTs from this era were not routinely digitized or otherwise published. We have developed a process to recover and calibrate data from these tapes. First, we play back and digitize the tapes as audio. Next, we demodulate the FM “audio” into individual waveforms. We then estimate the various instrument constants through careful measurement of “weight-lift” tests performed prior to each UGT on each instrument. Finally, these coefficients allow us to scale and shape the derived instrument response of the seismographs and compute poles and zeros. The result of this process is a digital record of the recorded seismic ground motion in a modern data format, stored in a searchable database. To date, we have digitized tapes from 592 UGTs.

More Details
25 Results
25 Results